Yu Xin, Leitner David M
Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, NV 89557, USA.
J Chem Phys. 2005 Feb 1;122(5):54902. doi: 10.1063/1.1830431.
The rate of vibrational energy transfer and thermal transport coefficients are computed for two structurally distinct proteins, green fluorescent protein (GFP) and myoglobin. The computation of thermal transport coefficients exploits the scaling of the energy diffusion coefficient with the vibrational mode frequency of a protein. Near 300 K we find that vibrational energy transfer due to anharmonicity contributes substantially to thermal transport because of the localization of many thermally accessible normal modes. The thermal diffusivity for the beta-barrel GFP is larger than that for myoglobin, particularly at low temperature due to a mean free path for vibrational energy propagation that is twice as large at low frequency. Vibrational energy transfer is also faster in GFP than in myoglobin for most vibrational modes.
计算了两种结构不同的蛋白质——绿色荧光蛋白(GFP)和肌红蛋白的振动能量转移速率和热传输系数。热传输系数的计算利用了能量扩散系数与蛋白质振动模式频率的标度关系。在300 K附近,我们发现由于非谐性导致的振动能量转移对热传输有很大贡献,这是因为许多热可及的简正模式存在局域化。β桶状GFP的热扩散率大于肌红蛋白,特别是在低温下,这是由于低频下振动能量传播的平均自由程是肌红蛋白的两倍。对于大多数振动模式,GFP中的振动能量转移也比肌红蛋白更快。