Suppr超能文献

基于两幅边缘图像相关性的放射治疗中自动患者定位系统的准确性。

Accuracy of an automatic patient-positioning system based on the correlation of two edge images in radiotherapy.

机构信息

Proton Therapy Center, National Cancer Center, 809 Madu 1-dong, Ilsandong-gu, Goyang, 411-769, Korea.

出版信息

J Digit Imaging. 2011 Apr;24(2):322-30. doi: 10.1007/s10278-009-9269-6. Epub 2010 Feb 2.

Abstract

We have clinically evaluated the accuracy of an automatic patient-positioning system based on the image correlation of two edge images in radiotherapy. Ninety-six head & neck images from eight patients undergoing proton therapy were compared with a digitally reconstructed radiograph (DRR) of planning CT. Two edge images, a reference image and a test image, were extracted by applying a Canny edge detector algorithm to a DRR and a 2D X-ray image, respectively, of each patient before positioning. In a simulation using a humanoid phantom, performed to verify the effectiveness of the proposed method, no registration errors were observed for given ranges of rotation, pitch, and translation in the x, y, and z directions. For real patients, however, there were discrepancies between the automatic positioning method and manual positioning by physicians or technicians. Using edged head coronal- and sagittal-view images, the average differences in registration between these two methods for the x, y, and z directions were 0.11 cm, 0.09 cm and 0.11 cm, respectively, whereas the maximum discrepancies were 0.34 cm, 0.38 cm, and 0.50 cm, respectively. For rotation and pitch, the average registration errors were 0.95° and 1.00°, respectively, and the maximum errors were 3.6° and 2.3°, respectively. The proposed automatic patient-positioning system based on edge image comparison was relatively accurate for head and neck patients. However, image deformation during treatment may render the automatic method less accurate, since the test image many differ significantly from the reference image.

摘要

我们临床评估了一种基于放射治疗中两个边缘图像的图像相关的自动患者定位系统的准确性。比较了 8 名接受质子治疗的头颈部患者的 96 个头颈部图像和计划 CT 的数字重建射线照片(DRR)。通过对每个患者的 DRR 和二维 X 射线图像分别应用 Canny 边缘检测算法,提取了两个边缘图像,即参考图像和测试图像。在使用仿人头体进行的模拟中,验证了所提出方法的有效性,在 x、y 和 z 方向的给定旋转、俯仰和平移范围内未观察到任何配准误差。然而,对于实际患者,自动定位方法与医生或技术人员的手动定位之间存在差异。使用边缘头部冠状和矢状视图图像,这两种方法在 x、y 和 z 方向上的注册差异平均值分别为 0.11cm、0.09cm 和 0.11cm,而最大差异分别为 0.34cm、0.38cm 和 0.50cm。对于旋转和俯仰,平均注册误差分别为 0.95°和 1.00°,最大误差分别为 3.6°和 2.3°。基于边缘图像比较的自动患者定位系统对头颈部患者相对准确。然而,由于测试图像可能与参考图像有很大差异,治疗期间的图像变形可能会使自动方法的准确性降低。

相似文献

1
Accuracy of an automatic patient-positioning system based on the correlation of two edge images in radiotherapy.
J Digit Imaging. 2011 Apr;24(2):322-30. doi: 10.1007/s10278-009-9269-6. Epub 2010 Feb 2.
3
Accuracy of low-dose proton CT image registration for pretreatment alignment verification in reference to planning proton CT.
J Appl Clin Med Phys. 2019 Apr;20(4):83-90. doi: 10.1002/acm2.12565. Epub 2019 Apr 1.
4
Phantom validation of coregistration of PET and CT for image-guided radiotherapy.
Med Phys. 2004 May;31(5):1083-92. doi: 10.1118/1.1688041.
5
A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
J Appl Clin Med Phys. 2016 Mar 8;17(2):174-193. doi: 10.1120/jacmp.v17i2.5999.
6
Accurate positioning for head and neck cancer patients using 2D and 3D image guidance.
J Appl Clin Med Phys. 2010 Oct 27;12(1):3270. doi: 10.1120/jacmp.v12i1.3270.

本文引用的文献

1
A computational approach to edge detection.
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.
2
Digital step edges from zero crossing of second directional derivatives.
IEEE Trans Pattern Anal Mach Intell. 1984 Jan;6(1):58-68. doi: 10.1109/tpami.1984.4767475.
3
Effect of translational and rotational errors on complex dose distributions with off-line and on-line position verification.
Int J Radiat Oncol Biol Phys. 2009 Aug 1;74(5):1600-8. doi: 10.1016/j.ijrobp.2009.02.056. Epub 2009 May 25.
4
Target volume dose considerations in proton beam treatment planning for lung tumors.
Med Phys. 2005 Dec;32(12):3549-57. doi: 10.1118/1.2126187.
6
A dose-volume-based tool for evaluating and ranking IMRT treatment plans.
J Appl Clin Med Phys. 2004 Autumn;5(4):1-14. doi: 10.1120/jacmp.v5i4.1981. Epub 2004 Oct 1.
8
9
Patient set-up using portal images: 2D/2D image registration using mutual information.
Comput Aided Surg. 2000;5(4):246-62. doi: 10.1002/1097-0150(2000)5:4<246::AID-IGS4>3.0.CO;2-Z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验