Suppr超能文献

心电图 U 波的起源:M 细胞和动态缝隙连接偶联的作用。

Origin of the electrocardiographic U wave: effects of M cells and dynamic gap junction coupling.

机构信息

Angel Medical Systems, Inc., 1163 Shrewsbury Avenue, Shrewsbury, NJ 07702, USA.

出版信息

Ann Biomed Eng. 2010 Mar;38(3):1060-70. doi: 10.1007/s10439-010-9941-5. Epub 2010 Feb 3.

Abstract

The electrophysiological basis underlying the genesis of the U wave remains uncertain. Previous U wave modeling studies have generally been restricted to 1-D or 2-D geometries, and it is not clear whether the U waves generated by these models would match clinically observed U wave body surface potential distributions (BSPDs). We investigated the role of M cells and transmural dispersion of repolarization (TDR) in a 2-D, fully ionic heart tissue slice model and a realistic 3-D heart/torso model. In the 2-D model, while a U wave was present in the ECG with dynamic gap junction conductivity, the ECG with static gap junctions did not exhibit a U wave. In the 3-D model, TDR was necessary to account for the clinically observed potential minimum in the right shoulder area during the U wave peak. Peak T wave simulations were also run. Consistent with at least some clinical findings, the U wave body surface maximum was shifted to the right compared to the T wave maximum. We conclude that TDR can account for the clinically observed U wave BSPD, and that dynamic gap junction conductivity can result in realistic U waves generated by M cells.

摘要

U 波产生的电生理学基础仍不确定。以前的 U 波建模研究通常仅限于 1-D 或 2-D 几何形状,并且不清楚这些模型产生的 U 波是否与临床观察到的 U 波体表电位分布(BSPD)相匹配。我们在 2-D 全离子心脏组织切片模型和现实的 3-D 心脏/躯干模型中研究了 M 细胞和复极跨壁离散(TDR)的作用。在 2-D 模型中,当心电图具有动态缝隙连接电导率时,存在 U 波,而具有静态缝隙连接的心电图则没有 U 波。在 3-D 模型中,需要 TDR 来解释 U 波峰值期间右肩区域临床观察到的电位最小。还运行了尖峰 T 波模拟。与至少一些临床发现一致,U 波体表最大值相对于 T 波最大值向右移位。我们得出结论,TDR 可以解释临床观察到的 U 波 BSPD,并且动态缝隙连接电导率可以导致 M 细胞产生的实际 U 波。

相似文献

1
Origin of the electrocardiographic U wave: effects of M cells and dynamic gap junction coupling.
Ann Biomed Eng. 2010 Mar;38(3):1060-70. doi: 10.1007/s10439-010-9941-5. Epub 2010 Feb 3.
2
Computer-simulated alternative modes of U-wave genesis.
J Cardiovasc Electrophysiol. 2008 Jan;19(1):84-9. doi: 10.1111/j.1540-8167.2007.00978.x. Epub 2007 Oct 4.
3
Identify drug-induced T wave morphology changes by a cell-to-electrocardiogram model and validation with clinical trial data.
J Electrocardiol. 2009 Nov-Dec;42(6):534-42. doi: 10.1016/j.jelectrocard.2009.07.010. Epub 2009 Aug 22.
4
Transmural and apicobasal gradients in repolarization contribute to T-wave genesis in human surface ECG.
Am J Physiol Heart Circ Physiol. 2011 Jul;301(1):H200-8. doi: 10.1152/ajpheart.01241.2010. Epub 2011 Apr 1.
5
Dispersion of repolarization, myocardial iso-source maps, and the electrocardiographic T and U waves.
J Electrocardiol. 2006 Oct;39(4 Suppl):S96-100. doi: 10.1016/j.jelectrocard.2006.06.005. Epub 2006 Aug 21.
6
Study of repolarization heterogeneity and electrocardiographic morphology with a modeling approach.
J Electrocardiol. 2008 Nov-Dec;41(6):581-7. doi: 10.1016/j.jelectrocard.2008.07.027. Epub 2008 Sep 19.
7
Cardiac conduction: an interplay between membrane and gap junction.
J Electrocardiol. 1998;31 Suppl:1-5. doi: 10.1016/s0022-0736(98)90271-0.
8
Adaptive multiscale model for simulating cardiac conduction.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14603-8. doi: 10.1073/pnas.1008443107. Epub 2010 Jul 29.
9
T-wave alternans: lessons learned from a biophysical ECG model.
J Electrocardiol. 2012 Nov-Dec;45(6):566-70. doi: 10.1016/j.jelectrocard.2012.07.011. Epub 2012 Sep 5.
10
Gap junctions and propagation of the cardiac action potential.
Adv Cardiol. 2006;42:71-85. doi: 10.1159/000092563.

引用本文的文献

1
QT Assessment in Early Drug Development: The Long and the Short of It.
Int J Mol Sci. 2019 Mar 15;20(6):1324. doi: 10.3390/ijms20061324.
2
An analysis of the U-wave and its relation to the T-wave in body surface potential maps for healthy subjects and MI patients.
Ann Noninvasive Electrocardiol. 2014 Mar;19(2):145-56. doi: 10.1111/anec.12110. Epub 2013 Nov 5.
3
Discordant U waves in the setting of hyperkalaemia.
BMJ Case Rep. 2013 Jul 4;2013:bcr2013010183. doi: 10.1136/bcr-2013-010183.
4
Diastolic electromechanical coupling: association of the ECG T-peak to T-end interval with echocardiographic markers of diastolic dysfunction.
Circ Arrhythm Electrophysiol. 2012 Jun 1;5(3):537-43. doi: 10.1161/CIRCEP.111.969717. Epub 2012 Mar 30.

本文引用的文献

2
Detection of U wave activity in healthy volunteers by high-resolution magnetocardiography.
J Electrocardiol. 2010 Jan-Feb;43(1):43-7. doi: 10.1016/j.jelectrocard.2009.06.004.
3
Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model.
Philos Trans A Math Phys Eng Sci. 2008 Sep 28;366(1879):3361-80. doi: 10.1098/rsta.2008.0088.
5
Computer-simulated alternative modes of U-wave genesis.
J Cardiovasc Electrophysiol. 2008 Jan;19(1):84-9. doi: 10.1111/j.1540-8167.2007.00978.x. Epub 2007 Oct 4.
6
Transmural dispersion of myofiber mechanics: implications for electrical heterogeneity in vivo.
J Am Coll Cardiol. 2007 Feb 27;49(8):909-16. doi: 10.1016/j.jacc.2006.07.074. Epub 2007 Feb 9.
7
ST segment depression: the possible role of global repolarization dynamics.
Biomed Eng Online. 2007 Feb 9;6:6. doi: 10.1186/1475-925X-6-6.
8
Modeling the calcium gate of cardiac gap junction channel.
J Physiol Sci. 2006 Feb;56(1):79-85. doi: 10.2170/physiolsci.r2139.
9
On the passive cardiac conductivity.
Ann Biomed Eng. 2005 Dec;33(12):1743-51. doi: 10.1007/s10439-005-7257-7.
10
Modulation of transmural repolarization.
Ann N Y Acad Sci. 2005 Jun;1047:314-23. doi: 10.1196/annals.1341.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验