Angel Medical Systems, Inc., 1163 Shrewsbury Avenue, Shrewsbury, NJ 07702, USA.
Ann Biomed Eng. 2010 Mar;38(3):1060-70. doi: 10.1007/s10439-010-9941-5. Epub 2010 Feb 3.
The electrophysiological basis underlying the genesis of the U wave remains uncertain. Previous U wave modeling studies have generally been restricted to 1-D or 2-D geometries, and it is not clear whether the U waves generated by these models would match clinically observed U wave body surface potential distributions (BSPDs). We investigated the role of M cells and transmural dispersion of repolarization (TDR) in a 2-D, fully ionic heart tissue slice model and a realistic 3-D heart/torso model. In the 2-D model, while a U wave was present in the ECG with dynamic gap junction conductivity, the ECG with static gap junctions did not exhibit a U wave. In the 3-D model, TDR was necessary to account for the clinically observed potential minimum in the right shoulder area during the U wave peak. Peak T wave simulations were also run. Consistent with at least some clinical findings, the U wave body surface maximum was shifted to the right compared to the T wave maximum. We conclude that TDR can account for the clinically observed U wave BSPD, and that dynamic gap junction conductivity can result in realistic U waves generated by M cells.
U 波产生的电生理学基础仍不确定。以前的 U 波建模研究通常仅限于 1-D 或 2-D 几何形状,并且不清楚这些模型产生的 U 波是否与临床观察到的 U 波体表电位分布(BSPD)相匹配。我们在 2-D 全离子心脏组织切片模型和现实的 3-D 心脏/躯干模型中研究了 M 细胞和复极跨壁离散(TDR)的作用。在 2-D 模型中,当心电图具有动态缝隙连接电导率时,存在 U 波,而具有静态缝隙连接的心电图则没有 U 波。在 3-D 模型中,需要 TDR 来解释 U 波峰值期间右肩区域临床观察到的电位最小。还运行了尖峰 T 波模拟。与至少一些临床发现一致,U 波体表最大值相对于 T 波最大值向右移位。我们得出结论,TDR 可以解释临床观察到的 U 波 BSPD,并且动态缝隙连接电导率可以导致 M 细胞产生的实际 U 波。