Suppr超能文献

跨壁复极化的调节

Modulation of transmural repolarization.

作者信息

Antzelevitch Charles

机构信息

Masonic Medical Research Laboratory, 2150 Bleecker Street, Utica, NY 13501-1787, USA.

出版信息

Ann N Y Acad Sci. 2005 Jun;1047:314-23. doi: 10.1196/annals.1341.028.

Abstract

Ventricular myocardium in larger mammals has been shown to be comprised of three distinct cell types: epicardial, M, and endocardial. Epicardial and M cell action potentials differ from endocardial cells with respect to the morphology of phase 1. These cells possess a prominent I(to)-mediated notch responsible for the "spike and dome" morphology of the epicardial and M cell response. M cells are distinguished from the other cell types in that they display a smaller I(Ks), but a larger late I(Na) and I(Na-Ca). These ionic distinctions underlie the longer action potential duration (APD) and steeper APD-rate relationship of the M cell. Difference in the time course of repolarization of phase 1 and phase 3 are responsible for the inscription of the electrocardiographic J wave and T wave, respectively. These repolarization gradients are sensitively modulated by electrotonic communication among the three cells types, K(1), and the presence of drugs that either reduce or augment net repolarizing current. A reduction in net repolarizing current generally leads to a preferential prolongation of the M cell action potential, responsible for a prolongation of the QT interval and an increase in transmural dispersion of repolarization (TDR), which underlies the development of torsade de pointes arrhythmias. An increase in net repolarizing current can lead to a preferential abbreviation of the action potential of epicardium in the right ventricle (RV), and endocardium in the left ventricle (LV). These actions also lead to a TDR that manifests as the Brugada syndrome in RV and the short QT syndrome in LV.

摘要

在较大型哺乳动物中,心室肌已被证明由三种不同的细胞类型组成:心外膜细胞、M细胞和心内膜细胞。心外膜细胞和M细胞的动作电位在1期形态方面与心内膜细胞不同。这些细胞具有一个由I(to)介导的明显切迹,这是心外膜细胞和M细胞反应呈现“尖峰和圆顶”形态的原因。M细胞与其他细胞类型的区别在于,它们表现出较小的I(Ks),但具有较大的晚期I(Na)和I(Na-Ca)。这些离子差异是M细胞动作电位持续时间(APD)较长以及APD-速率关系较陡峭的基础。1期和3期复极化时间过程的差异分别是心电图J波和T波形成的原因。这些复极化梯度受到三种细胞类型之间的电紧张通讯、K(1)以及减少或增加净复极化电流的药物的敏感调节。净复极化电流的减少通常会导致M细胞动作电位优先延长,这会导致QT间期延长和复极化跨壁离散度(TDR)增加,这是尖端扭转型室性心动过速心律失常发生的基础。净复极化电流的增加可导致右心室(RV)心外膜和左心室(LV)心内膜动作电位优先缩短。这些作用还会导致TDR,在RV表现为Brugada综合征,在LV表现为短QT综合征。

相似文献

1
Modulation of transmural repolarization.
Ann N Y Acad Sci. 2005 Jun;1047:314-23. doi: 10.1196/annals.1341.028.
2
Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT syndrome.
J Electrocardiol. 1999;32 Suppl:158-65. doi: 10.1016/s0022-0736(99)90074-2.
3
The role of sodium channel current in modulating transmural dispersion of repolarization and arrhythmogenesis.
J Cardiovasc Electrophysiol. 2006 May;17 Suppl 1(Suppl 1):S79-S85. doi: 10.1111/j.1540-8167.2006.00388.x.
4
Electrical heterogeneity within the ventricular wall.
Basic Res Cardiol. 2001 Nov;96(6):517-27. doi: 10.1007/s003950170002.
5
Cardiac repolarization. The long and short of it.
Europace. 2005 Sep;7 Suppl 2(Suppl 2):3-9. doi: 10.1016/j.eupc.2005.05.010.
7
Cellular basis for QT dispersion.
J Electrocardiol. 1998;30 Suppl:168-75. doi: 10.1016/s0022-0736(98)80070-8.
8
Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes.
J Am Coll Cardiol. 1996 Dec;28(7):1836-48. doi: 10.1016/S0735-1097(96)00377-4.
9
Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes.
Europace. 2007 Sep;9 Suppl 4(Suppl 4):iv4-15. doi: 10.1093/europace/eum166.
10
Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2024-38. doi: 10.1152/ajpheart.00355.2007. Epub 2007 Jun 22.

引用本文的文献

2
Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour.
J Physiol. 2017 Nov 1;595(21):6599-6612. doi: 10.1113/JP273651. Epub 2017 Oct 9.
3
Systems approach to the study of stretch and arrhythmias in right ventricular failure induced in rats by monocrotaline.
Prog Biophys Mol Biol. 2014 Aug;115(2-3):162-72. doi: 10.1016/j.pbiomolbio.2014.06.008. Epub 2014 Jul 9.
4
Assessment of inhomogeneities of repolarization in patients with systemic lupus erythematosus.
Ann Noninvasive Electrocardiol. 2014 Jul;19(4):374-82. doi: 10.1111/anec.12145. Epub 2014 Mar 5.
5
Electrophysiological and structural determinants of electrotonic modulation of repolarization by the activation sequence.
Front Physiol. 2013 Oct 8;4:281. doi: 10.3389/fphys.2013.00281. eCollection 2013.
6
Heterogeneity and function of K(ATP) channels in canine hearts.
Heart Rhythm. 2013 Oct;10(10):1576-83. doi: 10.1016/j.hrthm.2013.07.020. Epub 2013 Jul 17.
8
Origin of the electrocardiographic U wave: effects of M cells and dynamic gap junction coupling.
Ann Biomed Eng. 2010 Mar;38(3):1060-70. doi: 10.1007/s10439-010-9941-5. Epub 2010 Feb 3.
9
Electrophysiological challenges of cell-based myocardial repair.
Circulation. 2009 Dec 15;120(24):2496-508. doi: 10.1161/CIRCULATIONAHA.107.751412.
10
Sudden cardiac death secondary to antidepressant and antipsychotic drugs.
Expert Opin Drug Saf. 2008 Mar;7(2):181-94. doi: 10.1517/14740338.7.2.181.

本文引用的文献

1
Cellular mechanisms underlying the development of catecholaminergic ventricular tachycardia.
Circulation. 2005 May 31;111(21):2727-33. doi: 10.1161/CIRCULATIONAHA.104.479295. Epub 2005 May 23.
2
Role of sodium and calcium channel block in unmasking the Brugada syndrome.
Heart Rhythm. 2004 Jul;1(2):210-7. doi: 10.1016/j.hrthm.2004.03.061.
3
Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome.
Circulation. 2004 Dec 14;110(24):3661-6. doi: 10.1161/01.CIR.0000143078.48699.0C. Epub 2004 Nov 29.
4
Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties.
Circulation. 2004 Aug 24;110(8):904-10. doi: 10.1161/01.CIR.0000139333.83620.5D. Epub 2004 Aug 9.
5
Transmural dispersion of repolarization and ventricular tachyarrhythmias.
J Electrocardiol. 2004 Jul;37(3):191-200. doi: 10.1016/j.jelectrocard.2004.02.002.
6
Transmural distribution of connexins in rodent hearts.
J Cardiovasc Electrophysiol. 2004 Jun;15(6):710-5. doi: 10.1046/j.1540-8167.2004.03514.x.
7
Mutation in the KCNQ1 gene leading to the short QT-interval syndrome.
Circulation. 2004 May 25;109(20):2394-7. doi: 10.1161/01.CIR.0000130409.72142.FE.
8
Drug-induced torsades de pointes and implications for drug development.
J Cardiovasc Electrophysiol. 2004 Apr;15(4):475-95. doi: 10.1046/j.1540-8167.2004.03534.x.
9
Heterogeneous connexin43 expression produces electrophysiological heterogeneities across ventricular wall.
Am J Physiol Heart Circ Physiol. 2004 May;286(5):H2001-9. doi: 10.1152/ajpheart.00987.2003. Epub 2004 Jan 2.
10
Sudden death associated with short-QT syndrome linked to mutations in HERG.
Circulation. 2004 Jan 6;109(1):30-5. doi: 10.1161/01.CIR.0000109482.92774.3A. Epub 2003 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验