Suppr超能文献

量化序列变异对调控相互作用的影响。

Quantifying the effect of sequence variation on regulatory interactions.

机构信息

Max Planck Institute for Molecular Genetics, Computational Biology, Ihnestrasse 73, Berlin, Germany.

出版信息

Hum Mutat. 2010 Apr;31(4):477-83. doi: 10.1002/humu.21209.

Abstract

The increasing amount of sequence data provides new opportunities and challenges to derive mechanistic models that can link sequence variations to phenotypic diversity. Here we introduce a new computational framework to suggest possible consequences of sequence variations on regulatory networks. Our method, called sTRAP (strap.molgen.mpg.de), analyses variations in the DNA sequence and predicts quantitative changes to the binding strength of any transcription factor for which there is a binding model. We have tested the method against a set of known associations between SNPs and their regulatory consequences. Our predictions are robust with respect to different parameters and model assumptions. Importantly we set an objective and quantifiable benchmark against which future improvements can be compared. Given the good performance of our method, we developed a publicly available tool that can serve as an important starting point for routine analysis of disease-associated sequence regions.

摘要

越来越多的序列数据为衍生能够将序列变异与表型多样性联系起来的机制模型提供了新的机会和挑战。在这里,我们引入了一个新的计算框架来推测序列变异对调控网络的可能影响。我们的方法称为 sTRAP(strap.molgen.mpg.de),它分析 DNA 序列中的变异,并预测任何具有结合模型的转录因子的结合强度的定量变化。我们已经针对 SNP 与其调控后果之间的一组已知关联对该方法进行了测试。我们的预测对于不同的参数和模型假设具有稳健性。重要的是,我们设定了一个客观的、可量化的基准,可以用来比较未来的改进。鉴于我们的方法表现良好,我们开发了一个公共可用的工具,可以作为分析与疾病相关的序列区域的常规分析的重要起点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验