文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合基因组分析确定了具有 PDGFRA、IDH1、EGFR 和 NF1 异常的胶质母细胞瘤的临床相关亚型。

Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.

机构信息

The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.

出版信息

Cancer Cell. 2010 Jan 19;17(1):98-110. doi: 10.1016/j.ccr.2009.12.020.


DOI:10.1016/j.ccr.2009.12.020
PMID:20129251
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2818769/
Abstract

The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.

摘要

癌症基因组图谱网络(The Cancer Genome Atlas Network)最近对胶质母细胞瘤(glioblastoma multiforme,GBM)中的复发性基因组异常进行了编目。我们描述了一种强大的基于基因表达的胶质母细胞瘤分子分类方法,将其分为神经前体细胞型、神经型、经典型和间质型,并整合多维基因组数据来建立体细胞突变和 DNA 拷贝数的模式。表皮生长因子受体(EGFR)、神经纤维瘤 1 型(NF1)和血小板衍生生长因子受体 A/异柠檬酸脱氢酶 1(PDGFRA/IDH1)的异常和基因表达分别定义了经典型、间质型和神经前体细胞型。正常脑细胞类型的基因特征显示出亚型与不同神经谱系之间的强烈关系。此外,不同亚型对侵袭性治疗的反应也不同,经典型亚型获益最大,神经前体细胞型则没有获益。我们提供了一个框架,将转录组和基因组维度统一起来,对胶质母细胞瘤进行分子分层,这对未来的研究具有重要意义。

相似文献

[1]
Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.

Cancer Cell. 2010-1-19

[2]
A simplified approach for molecular classification of glioblastomas (GBMs): experience from a tertiary care center in India.

Brain Tumor Pathol. 2016-7

[3]
Molecular classification of glioblastoma based on immunohistochemical expression of EGFR, PDGFRA, NF1, IDH1, p53 and PTEN proteins.

Pol J Pathol. 2021

[4]
Molecular characterization of long-term survivors of glioblastoma using genome- and transcriptome-wide profiling.

Int J Cancer. 2014-10-15

[5]
A glycolysis-based ten-gene signature correlates with the clinical outcome, molecular subtype and IDH1 mutation in glioblastoma.

J Genet Genomics. 2017-9-21

[6]
Molecular subtypes of glioblastoma are relevant to lower grade glioma.

PLoS One. 2014-3-10

[7]
PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma.

Brain Pathol. 2013-3-18

[8]
Farewell to GBM-O: Genomic and transcriptomic profiling of glioblastoma with oligodendroglioma component reveals distinct molecular subgroups.

Acta Neuropathol Commun. 2016-1-13

[9]
Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome.

Ann Oncol. 2015-5

[10]
Genomic and Phenotypic Characterization of a Broad Panel of Patient-Derived Xenografts Reflects the Diversity of Glioblastoma.

Clin Cancer Res. 2020-3-1

引用本文的文献

[1]
Interstitial fluid transport dynamics predict glioblastoma invasion and progression.

NPJ Biomed Innov. 2025

[2]
Transposable element dynamics in glioblastoma stem cells: insights from locus-specific quantification.

Mob DNA. 2025-9-2

[3]
Evolving therapeutic strategies in glioblastoma: traditional approaches and novel interventions.

3 Biotech. 2025-9

[4]
Research landscape of glioma and inflammation over the past two decades.

Front Immunol. 2025-8-13

[5]
Construction of a Genetic Prognostic Model in the Glioblastoma Tumor Microenvironment.

Genes (Basel). 2025-7-24

[6]
The Roles of RNA-Binding Proteins in Vasculogenic Mimicry Regulation in Glioblastoma.

Int J Mol Sci. 2025-8-18

[7]
The Pivotal Role of NF-κB in Glioblastoma: Mechanisms of Activation and Therapeutic Implications.

Int J Mol Sci. 2025-8-15

[8]
Glioblastoma: From Pathophysiology to Novel Therapeutic Approaches.

Biomedicines. 2025-8-12

[9]
The Evidence That Brain Cancers Could Be Effectively Treated with In-Home Radiofrequency Waves.

Cancers (Basel). 2025-8-15

[10]
Unraveling Glioblastoma Heterogeneity: Advancing Immunological Insights and Therapeutic Innovations.

Brain Sci. 2025-8-2

本文引用的文献

[1]
Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations.

PLoS One. 2009-11-13

[2]
Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.

Nature. 2009-11-5

[3]
IDH1 and IDH2 mutations in gliomas.

N Engl J Med. 2009-2-19

[4]
Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts.

Neuro Oncol. 2009-10

[5]
Comprehensive genomic characterization defines human glioblastoma genes and core pathways.

Nature. 2008-10-23

[6]
Stem cell-related "self-renewal" signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma.

J Clin Oncol. 2008-6-20

[7]
A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function.

J Neurosci. 2008-1-2

[8]
Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma.

Proc Natl Acad Sci U S A. 2007-12-11

[9]
Malignant astrocytic glioma: genetics, biology, and paths to treatment.

Genes Dev. 2007-11-1

[10]
AffyProbeMiner: a web resource for computing or retrieving accurately redefined Affymetrix probe sets.

Bioinformatics. 2007-9-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索