Intel Corporation, Santa Clara, CA 95054 USA.
IEEE Trans Med Imaging. 2010 Feb;29(2):217-29. doi: 10.1109/TMI.2009.2031492.
For imaging problems in which numerical solutions need to be computed for both the inverse and the underlying forward problems, discretization can be a major factor that determines the accuracy of imaging. In this work, we analyze the effect of discretization on the accuracy of fluorescence diffuse optical tomography. We model the forward problem by a pair of diffusion equations at the excitation and emission wavelengths and consider a finite element discretization method for the numerical solution of the forward problem. For the inverse problem, we use an optimization framework which allows incorporation of a priori information in the form of zeroth- and first-order Tikhonov regularization terms. Next, we convert the inverse problem into a variational problem and use Galerkin projection to discretize the inverse problem. Following the discretization, we analyze the error in reconstructed images due to the discretization of the forward and inverse problems and present two theorems which point out the factors that may lead to high error such as the mutual dependence of the forward and inverse problems, the number of sources and detectors, their configuration and their positions with respect to fluorophore concentration, and the formulation of the inverse problem. Finally, we demonstrate the results and implications of our error analysis by numerical experiments. In the second part of the paper, we apply our results to design novel adaptive discretization algorithms.
对于需要计算反问题和基础正问题的数值解的成像问题,离散化可能是决定成像准确性的主要因素。在这项工作中,我们分析了离散化对荧光漫射光学层析成像准确性的影响。我们通过激发和发射波长的一对扩散方程来对正问题进行建模,并考虑使用有限元离散化方法来求解正问题的数值解。对于反问题,我们使用一个优化框架,允许以零阶和一阶 Tikhonov 正则化项的形式纳入先验信息。接下来,我们将反问题转化为变分问题,并使用 Galerkin 投影对反问题进行离散化。在离散化之后,我们分析了由于正问题和反问题的离散化而导致的重建图像中的误差,并提出了两个定理,指出了可能导致高误差的因素,例如正问题和反问题的相互依赖性、源和探测器的数量及其配置及其相对于荧光团浓度的位置,以及反问题的表述。最后,我们通过数值实验演示了我们的误差分析的结果和影响。在论文的第二部分,我们将我们的结果应用于设计新的自适应离散化算法。