使用实验数据对荧光漫射光学断层成像的自适应网格算法进行性能评估。
Performance evaluation of adaptive meshing algorithms for fluorescence diffuse optical tomography using experimental data.
机构信息
Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA.
出版信息
Opt Lett. 2010 Nov 15;35(22):3727-9. doi: 10.1364/OL.35.003727.
Fluorescence diffuse optical tomography (FDOT) is a computationally demanding imaging problem. The discretizations of FDOT forward and inverse problems pose a trade-off between the accuracy and the computational efficiency of the image reconstruction. To address this trade-off, we analyzed the effect of discretization on the accuracy of FDOT imaging and proposed novel adaptive meshing algorithms for FDOT in a series of studies. In this Letter, we apply these new adaptive meshing algorithms to FDOT imaging using real data from a phantom experiment to demonstrate the practical advantages of our algorithms in FDOT image reconstruction.
荧光漫射光学断层成像(FDOT)是一个计算要求很高的成像问题。FDOT 正、逆问题的离散化在图像重建的准确性和计算效率之间存在权衡。为了解决这一权衡问题,我们分析了离散化对 FDOT 成像准确性的影响,并在一系列研究中提出了 FDOT 的新型自适应网格算法。在这封信中,我们将这些新的自适应网格算法应用于 FDOT 成像,使用来自体模实验的真实数据来证明我们的算法在 FDOT 图像重建中的实际优势。