Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA.
Opt Lett. 2010 Nov 15;35(22):3727-9. doi: 10.1364/OL.35.003727.
Fluorescence diffuse optical tomography (FDOT) is a computationally demanding imaging problem. The discretizations of FDOT forward and inverse problems pose a trade-off between the accuracy and the computational efficiency of the image reconstruction. To address this trade-off, we analyzed the effect of discretization on the accuracy of FDOT imaging and proposed novel adaptive meshing algorithms for FDOT in a series of studies. In this Letter, we apply these new adaptive meshing algorithms to FDOT imaging using real data from a phantom experiment to demonstrate the practical advantages of our algorithms in FDOT image reconstruction.
荧光漫射光学断层成像(FDOT)是一个计算要求很高的成像问题。FDOT 正、逆问题的离散化在图像重建的准确性和计算效率之间存在权衡。为了解决这一权衡问题,我们分析了离散化对 FDOT 成像准确性的影响,并在一系列研究中提出了 FDOT 的新型自适应网格算法。在这封信中,我们将这些新的自适应网格算法应用于 FDOT 成像,使用来自体模实验的真实数据来证明我们的算法在 FDOT 图像重建中的实际优势。