Landragin-Frassati Anne, Bonnet Stéphane, Da Silva Anabela, Dinten Jean-Marc, Georges Didier
CEA-LETI, Micro-Technologies for Biology and Healthcare Division, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France.
Opt Express. 2009 Oct 12;17(21):18433-48. doi: 10.1364/OE.17.018433.
Fluorescence diffuse optical tomography is a powerful tool for the investigation of molecular events in studies for new therapeutic developments. Here, the emphasis is put on the mathematical problem of tomography, which can be formulated in terms of an estimation of physical parameters appearing as a set of Partial Differential Equations (PDEs). The standard polynomial Finite Element Method (FEM) is a method of choice to solve the diffusion equation because it has no restriction in terms of neither the geometry nor the homogeneity of the system, but it is time consuming. In order to speed up computation time, this paper proposes an alternative numerical model, describing the diffusion operator in orthonormal basis of compactly supported wavelets. The discretization of the PDEs yields to matrices which are easily computed from derivative wavelet product integrals. Due to the shape of the wavelet basis, the studied domain is included in a regular fictitious domain. A validation study and a comparison with the standard FEM are conducted on synthetic data.
荧光扩散光学层析成像技术是一种强大的工具,可用于在新治疗方法研发的研究中探究分子事件。在此,重点关注层析成像的数学问题,该问题可以根据作为一组偏微分方程(PDEs)出现的物理参数估计来表述。标准多项式有限元方法(FEM)是求解扩散方程的一种首选方法,因为它在系统的几何形状和均匀性方面均无限制,但计算耗时。为了加快计算速度,本文提出了一种替代数值模型,该模型在紧支小波的正交基中描述扩散算子。偏微分方程的离散化产生了可通过导数小波乘积积分轻松计算的矩阵。由于小波基的形状,所研究的域包含在一个规则的虚拟域中。对合成数据进行了验证研究并与标准有限元方法进行了比较。