Department of Biomedical Engineering, Tel-Aviv University, 69978 Tel Aviv, Israel.
IEEE Trans Med Imaging. 2010 Feb;29(2):488-501. doi: 10.1109/TMI.2009.2037201.
This paper presents a procedure for automatic extraction and segmentation of a class-specific object (or region) by learning class-specific boundaries. We describe and evaluate the method with a specific focus on the detection of lesion regions in uterine cervix images. The watershed segmentation map of the input image is modeled using a Markov random field (MRF) in which watershed regions correspond to binary random variables indicating whether the region is part of the lesion tissue or not. The local pairwise factors on the arcs of the watershed map indicate whether the arc is part of the object boundary. The factors are based on supervised learning of a visual word distribution. The final lesion region segmentation is obtained using a loopy belief propagation applied to the watershed arc-level MRF. Experimental results on real data show state-of-the-art segmentation results on this very challenging task that, if necessary, can be interactively enhanced.
本文提出了一种通过学习类特定边界自动提取和分割特定类对象(或区域)的方法。我们使用特定于检测子宫颈图像中病变区域的方法来描述和评估该方法。使用马尔可夫随机场 (MRF) 对输入图像的分水岭分割图进行建模,其中分水岭区域对应于指示该区域是否为病变组织一部分的二进制随机变量。分水岭图弧上的局部成对因子指示该弧是否为对象边界的一部分。该因子基于监督学习的视觉词分布。使用应用于分水岭弧级 MRF 的循环置信传播来获得最终的病变区域分割。在真实数据上的实验结果表明,在这个极具挑战性的任务中达到了最先进的分割结果,如果需要,还可以进行交互增强。