Suppr超能文献

一种基于累积和法的生理监测多级警报方法。

A Cusum-based multilevel alerting method for physiological monitoring.

作者信息

Yang Ping, Dumont Guy, Ansermino J Mark

机构信息

Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

出版信息

IEEE Trans Inf Technol Biomed. 2010 Jul;14(4):1046-52. doi: 10.1109/TITB.2010.2040394. Epub 2010 Feb 2.

Abstract

Alerting systems used by current physiological monitors are designed to detect changes in the levels of vital signs, but they tend to be very sensitive to artifacts. This paper proposes a method to detect changes in the direction of trend and generate multilevel alerts according to the statistical significance of the detection. One-point-ahead signal predictions are calculated by averaging the historical data with the weights decreasing in the past. The two-sided cumulative sums (Cusum) of the prediction errors are tested against multiple thresholds to detect change points with two levels of certainty. The temporal shapes of the detected changes are analyzed using heuristics to determine whether to trigger an alert. The method was tested offline using 20 cases collected during surgery at a local hospital. The detection results were evaluated by two experienced anesthesiologists. The direction of trend was correctly detected in 90.2% of the annotated changes for end-tidal carbon dioxide, 89.4% for expiratory minute volume, 91.8% for peak airway pressure, and 95.4% for noninvasive blood pressure. The certainty levels of the true-positive alerts estimated by the algorithm have a high ratio of agreement with the anesthesiologists' evaluations.

摘要

当前生理监测仪所使用的警报系统旨在检测生命体征水平的变化,但它们往往对伪迹非常敏感。本文提出了一种方法,用于检测趋势方向的变化,并根据检测的统计显著性生成多级警报。通过对历史数据进行加权平均(权重随时间递减)来计算一步预测信号。将预测误差的双边累积和(Cusum)与多个阈值进行比较,以检测具有两个确定水平的变化点。利用启发式方法分析检测到的变化的时间形态,以确定是否触发警报。该方法使用当地医院手术期间收集的20个病例进行了离线测试。检测结果由两名经验丰富的麻醉师进行评估。对于呼气末二氧化碳,在90.2%的注释变化中正确检测到了趋势方向;对于呼气分钟量,为89.4%;对于气道峰值压力,为91.8%;对于无创血压,为95.4%。算法估计的真阳性警报的确定水平与麻醉师的评估具有较高的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验