Chen Lujie, Dubrawski Artur, Wang Donghan, Fiterau Madalina, Guillame-Bert Mathieu, Bose Eliezer, Kaynar Ata M, Wallace David J, Guttendorf Jane, Clermont Gilles, Pinsky Michael R, Hravnak Marilyn
1Auton Lab, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA. 2Department of Acute and Tertiary Care, University of Pittsburgh Schools of Nursing, Pittsburgh, PA. 3Department of Critical Care Medicine, University of Pittsburgh Schools of Medicine, Pittsburgh, PA.
Crit Care Med. 2016 Jul;44(7):e456-63. doi: 10.1097/CCM.0000000000001660.
The use of machine-learning algorithms to classify alerts as real or artifacts in online noninvasive vital sign data streams to reduce alarm fatigue and missed true instability.
Observational cohort study.
Twenty-four-bed trauma step-down unit.
Two thousand one hundred fifty-three patients.
Noninvasive vital sign monitoring data (heart rate, respiratory rate, peripheral oximetry) recorded on all admissions at 1/20 Hz, and noninvasive blood pressure less frequently, and partitioned data into training/validation (294 admissions; 22,980 monitoring hours) and test sets (2,057 admissions; 156,177 monitoring hours). Alerts were vital sign deviations beyond stability thresholds. A four-member expert committee annotated a subset of alerts (576 in training/validation set, 397 in test set) as real or artifact selected by active learning, upon which we trained machine-learning algorithms. The best model was evaluated on test set alerts to enact online alert classification over time.
The Random Forest model discriminated between real and artifact as the alerts evolved online in the test set with area under the curve performance of 0.79 (95% CI, 0.67-0.93) for peripheral oximetry at the instant the vital sign first crossed threshold and increased to 0.87 (95% CI, 0.71-0.95) at 3 minutes into the alerting period. Blood pressure area under the curve started at 0.77 (95% CI, 0.64-0.95) and increased to 0.87 (95% CI, 0.71-0.98), whereas respiratory rate area under the curve started at 0.85 (95% CI, 0.77-0.95) and increased to 0.97 (95% CI, 0.94-1.00). Heart rate alerts were too few for model development.
Machine-learning models can discern clinically relevant peripheral oximetry, blood pressure, and respiratory rate alerts from artifacts in an online monitoring dataset (area under the curve > 0.87).
使用机器学习算法将在线无创生命体征数据流中的警报分类为真实警报或伪警报,以减少警报疲劳和漏报真正的不稳定情况。
观察性队列研究。
拥有24张床位的创伤降级护理单元。
2153名患者。
记录所有入院患者以1/20赫兹频率采集的无创生命体征监测数据(心率、呼吸频率、外周血氧饱和度),无创血压采集频率较低,并将数据分为训练/验证集(294例入院患者;22980个监测小时)和测试集(2057例入院患者;156177个监测小时)。警报是指生命体征超出稳定阈值的偏差。一个由四人组成的专家委员会通过主动学习选择了一部分警报(训练/验证集中576个,测试集中397个),将其标注为真实警报或伪警报,在此基础上我们训练机器学习算法。对最佳模型在测试集警报上进行评估,以实现随时间的在线警报分类。
在测试集中,随着警报在线演变,随机森林模型能够区分真实警报和伪警报。对于外周血氧饱和度,在生命体征首次超过阈值瞬间,曲线下面积性能为0.79(95%置信区间,0.67 - 0.93),在警报期开始3分钟时增加到0.87(95%置信区间,0.71 - 0.95)。血压曲线下面积起始为0.77(95%置信区间,0.64 - 0.95),并增加到0.87(95%置信区间,0.71 - 0.98),而呼吸频率曲线下面积起始为0.85(95%置信区间,0.77 - 0.95),并增加到0.97(95%置信区间,0.94 - 1.00)。心率警报数量太少,无法用于模型开发。
机器学习模型能够从在线监测数据集中的伪警报中辨别出临床相关的外周血氧饱和度、血压和呼吸频率警报(曲线下面积>0.87)。