Suppr超能文献

流感病毒感染和病理学的动态

Dynamics of influenza virus infection and pathology.

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom.

出版信息

J Virol. 2010 Apr;84(8):3974-83. doi: 10.1128/JVI.02078-09. Epub 2010 Feb 3.

Abstract

A key question in pandemic influenza is the relative roles of innate immunity and target cell depletion in limiting primary infection and modulating pathology. Here, we model these interactions using detailed data from equine influenza virus infection, combining viral and immune (type I interferon) kinetics with estimates of cell depletion. The resulting dynamics indicate a powerful role for innate immunity in controlling the rapid peak in virus shedding. As a corollary, cells are much less depleted than suggested by a model of human influenza based only on virus-shedding data. We then explore how differences in the influence of viral proteins on interferon kinetics can account for the observed spectrum of virus shedding, immune response, and influenza pathology. In particular, induction of high levels of interferon ("cytokine storms"), coupled with evasion of its effects, could lead to severe pathology, as hypothesized for some fatal cases of influenza.

摘要

在大流行性流感中,一个关键问题是先天免疫和靶细胞耗竭在限制初次感染和调节病理学方面的相对作用。在这里,我们使用马流感病毒感染的详细数据来模拟这些相互作用,将病毒和免疫(I 型干扰素)动力学与细胞耗竭的估计值结合起来。所得动力学表明先天免疫在控制病毒脱落的快速峰值方面起着强大的作用。作为推论,与仅基于病毒脱落数据的基于人类流感的模型相比,细胞的耗竭程度要低得多。然后,我们探讨了病毒蛋白对干扰素动力学的影响差异如何解释观察到的病毒脱落、免疫反应和流感病理学谱。特别是,高水平干扰素的诱导(“细胞因子风暴”),加上对其作用的逃避,可能导致严重的病理,正如一些致命的流感病例所假设的那样。

相似文献

1
Dynamics of influenza virus infection and pathology.
J Virol. 2010 Apr;84(8):3974-83. doi: 10.1128/JVI.02078-09. Epub 2010 Feb 3.
2
Modeling within-host dynamics of influenza virus infection including immune responses.
PLoS Comput Biol. 2012;8(6):e1002588. doi: 10.1371/journal.pcbi.1002588. Epub 2012 Jun 28.
3
Evolution of equine influenza virus in vaccinated horses.
J Virol. 2013 Apr;87(8):4768-71. doi: 10.1128/JVI.03379-12. Epub 2013 Feb 6.
4
Longitudinal study describing the clinical signs observed in horses naturally infected with equine influenza.
Aust Vet J. 2011 Jul;89 Suppl 1:22-3. doi: 10.1111/j.1751-0813.2011.00733.x.
8
Onset and duration of immunity to equine influenza virus resulting from canarypox-vectored (ALVAC) vaccination.
Vet Immunol Immunopathol. 2010 May 15;135(1-2):100-107. doi: 10.1016/j.vetimm.2009.11.007. Epub 2009 Nov 24.
9
Antibody and IFN-gamma responses induced by a recombinant canarypox vaccine and challenge infection with equine influenza virus.
Vet Immunol Immunopathol. 2006 Aug 15;112(3-4):225-33. doi: 10.1016/j.vetimm.2006.02.007. Epub 2006 Apr 18.
10
Pathological changes in horses dying with equine influenza in Australia, 2007.
Aust Vet J. 2011 Jul;89 Suppl 1:19-22. doi: 10.1111/j.1751-0813.2011.00731.x.

引用本文的文献

2
The Impact of Vitamin D in the Prevention of Influenza, COVID-19, and Dengue: A Review.
Biomedicines. 2025 Apr 9;13(4):927. doi: 10.3390/biomedicines13040927.
3
Microfluidic digital focus assays for the quantification of infectious influenza virus.
Lab Chip. 2025 Apr 8;25(8):2004-2016. doi: 10.1039/d4lc00940a.
5
The kinetics of SARS-CoV-2 infection based on a human challenge study.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2406303121. doi: 10.1073/pnas.2406303121. Epub 2024 Nov 7.
7
Influenza virus shedding and symptoms: Dynamics and implications from a multiseason household transmission study.
PNAS Nexus. 2024 Aug 21;3(9):pgae338. doi: 10.1093/pnasnexus/pgae338. eCollection 2024 Sep.
8
Modeling the CD8+ T cell immune response to influenza infection in adult and aged mice.
J Theor Biol. 2024 Oct 7;593:111898. doi: 10.1016/j.jtbi.2024.111898. Epub 2024 Jul 10.
10
Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody.
PLoS Pathog. 2024 Apr 18;20(4):e1011680. doi: 10.1371/journal.ppat.1011680. eCollection 2024 Apr.

本文引用的文献

1
Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic.
Nature. 2009 Jun 25;459(7250):1122-5. doi: 10.1038/nature08182.
2
Towards a quantitative understanding of the within-host dynamics of influenza A infections.
J R Soc Interface. 2010 Jan 6;7(42):35-47. doi: 10.1098/rsif.2009.0067. Epub 2009 May 27.
3
Simulation and prediction of the adaptive immune response to influenza A virus infection.
J Virol. 2009 Jul;83(14):7151-65. doi: 10.1128/JVI.00098-09. Epub 2009 May 13.
4
The multifunctional NS1 protein of influenza A viruses.
J Gen Virol. 2008 Oct;89(Pt 10):2359-2376. doi: 10.1099/vir.0.2008/004606-0.
5
Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses.
Antiviral Res. 2008 Sep;79(3):166-78. doi: 10.1016/j.antiviral.2008.04.006. Epub 2008 May 23.
6
Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history.
Cytokine Growth Factor Rev. 2008 Feb;19(1):3-19. doi: 10.1016/j.cytogfr.2007.10.006. Epub 2008 Jan 11.
7
The influenza virus NS1 protein: inhibitor of innate and adaptive immunity.
Infect Disord Drug Targets. 2007 Dec;7(4):336-43. doi: 10.2174/187152607783018754.
9
Neuraminidase inhibitor resistance in influenza: assessing the danger of its generation and spread.
PLoS Comput Biol. 2007 Dec;3(12):e240. doi: 10.1371/journal.pcbi.0030240.
10
The pathology of influenza virus infections.
Annu Rev Pathol. 2008;3:499-522. doi: 10.1146/annurev.pathmechdis.3.121806.154316.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验