Suppr超能文献

HCO3−(-)分泌和 CaCO3沉淀在海洋硬骨鱼类体内的肠道水分吸收中起主要作用。

HCO (3)(-) secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo.

机构信息

University of Exeter, Hatherly Laboratories, Exeter, UK.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R877-86. doi: 10.1152/ajpregu.00545.2009. Epub 2010 Feb 3.

Abstract

The intestine of marine teleosts must effectively absorb fluid from ingested seawater to avoid dehydration. This fluid transport has been almost exclusively characterized as driven by NaCl absorption. However, an additional feature of the osmoregulatory role of the intestine is substantial net HCO(3)(-) secretion. This is suggested to drive additional fluid absorption directly (via Cl(-)/HCO(3)(-) exchange) and indirectly by precipitating ingested Ca(2+) as CaCO(3), thus creating the osmotic gradient for additional fluid absorption. The present study tested this hypothesis by perfusing the intestine of the European flounder in vivo with varying [Ca(2+)]: 10 (control), 40, and 90 mM. Fractional fluid absorption increased from 47% (control) to 73% (90 mM Ca(2+)), where almost all secreted HCO(3)(-) was excreted as CaCO(3). This additional fluid absorption could not be explained by NaCl cotransport. Instead, a significant positive relationship between Na(+)-independent fluid absorption and total HCO(3)(-) secretion was consistent with the predicted roles for anion exchange and CaCO(3) precipitation. Further analysis suggested that Na(+)-independent fluid absorption could be accounted for by net Cl(-) and H(+) absorption (from Cl(-)/HCO(3)(-) exchange and CO(2) hydration, respectively). There was no evidence to suggest that CaCO(3) alone was responsible for driving fluid absorption. However, by preventing the accumulation of luminal Ca(2+) it played a vital role by dynamically maintaining a favorable osmotic gradient all along the intestine, which permits substantially higher rates of solute-linked fluid absorption. To overcome the resulting hyperosmotic and highly acidic absorbate, it is proposed that plasma HCO(3)(-) buffers the absorbed H(+) (from HCO(3)(-) production), and consequently reduces the osmolarity of the absorbed fluid entering the body.

摘要

海洋硬骨鱼类的肠道必须有效地从摄入的海水中吸收液体,以避免脱水。这种液体运输几乎完全被描述为由 NaCl 吸收驱动。然而,肠道的另一个重要的渗透调节作用是大量的净 HCO3-分泌。这被认为可以直接驱动额外的液体吸收(通过 Cl--HCO3-交换),并间接通过沉淀摄入的 Ca2+为 CaCO3,从而为额外的液体吸收创造渗透梯度。本研究通过在体内向欧牙鲆的肠道灌注不同的[Ca2+]:10(对照)、40 和 90 mM,来检验这一假设。液体吸收分数从 47%(对照)增加到 73%(90 mM Ca2+),其中几乎所有分泌的 HCO3-都以 CaCO3 的形式排出。这种额外的液体吸收不能用 NaCl 共转运来解释。相反,Na+-独立的液体吸收与总 HCO3-分泌之间存在显著的正相关关系,这与阴离子交换和 CaCO3 沉淀的预测作用一致。进一步的分析表明,Na+-独立的液体吸收可以用净 Cl-和 H+吸收来解释(分别来自 Cl--HCO3-交换和 CO2 水合)。没有证据表明 CaCO3 本身是驱动液体吸收的唯一原因。然而,通过防止腔内 Ca2+的积累,它通过动态地维持整个肠道的有利渗透梯度,发挥了至关重要的作用,从而允许更高的溶质相关液体吸收速率。为了克服由此产生的高渗透压和高度酸性的吸收物,建议血浆 HCO3-缓冲吸收的 H+(来自 HCO3-的产生),从而降低进入体内的吸收液体的渗透压。

相似文献

1
HCO (3)(-) secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R877-86. doi: 10.1152/ajpregu.00545.2009. Epub 2010 Feb 3.
2
Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R870-6. doi: 10.1152/ajpregu.00513.2009. Epub 2010 Feb 3.
4
Intestinal bicarbonate secretion by marine teleost fish--why and how?
Biochim Biophys Acta. 2002 Nov 13;1566(1-2):182-93. doi: 10.1016/s0005-2736(02)00600-4.
6
Intestinal anion exchange in marine teleosts is involved in osmoregulation and contributes to the oceanic inorganic carbon cycle.
Acta Physiol (Oxf). 2011 Jul;202(3):421-34. doi: 10.1111/j.1748-1716.2010.02241.x. Epub 2011 Mar 1.
7
Bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine.
Am J Physiol Regul Integr Comp Physiol. 2005 Apr;288(4):R936-46. doi: 10.1152/ajpregu.00684.2003. Epub 2004 Dec 2.
8
Regulation of apical H⁺-ATPase activity and intestinal HCO₃⁻ secretion in marine fish osmoregulation.
Am J Physiol Regul Integr Comp Physiol. 2011 Dec;301(6):R1682-91. doi: 10.1152/ajpregu.00059.2011. Epub 2011 Aug 24.
9
Postprandial acid-base balance and ion regulation in freshwater and seawater-acclimated European flounder, Platichthys flesus.
J Comp Physiol B. 2007 Aug;177(6):597-608. doi: 10.1007/s00360-007-0158-3. Epub 2007 Mar 28.
10
Effect of luminal sodium concentration on bicarbonate absorption in rat jejunum.
J Clin Invest. 1973 Dec;52(12):3172-9. doi: 10.1172/JCI107517.

引用本文的文献

3
Effect of long-term thermal challenge on the Antarctic notothenioid Notothenia rossii.
Fish Physiol Biochem. 2019 Aug;45(4):1445-1461. doi: 10.1007/s10695-019-00660-3. Epub 2019 Jun 7.
4
Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor.
Int J Mol Sci. 2018 Apr 4;19(4):1072. doi: 10.3390/ijms19041072.
5
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models.
J Comp Physiol B. 2017 Apr;187(3):395-462. doi: 10.1007/s00360-016-1044-7. Epub 2016 Nov 1.
6
Calcium-sensing receptor: A new target for therapy of diarrhea.
World J Gastroenterol. 2016 Mar 7;22(9):2711-24. doi: 10.3748/wjg.v22.i9.2711.
7
Metabolic responses of the Antarctic fishes Notothenia rossii and Notothenia coriiceps to sewage pollution.
Fish Physiol Biochem. 2015 Oct;41(5):1205-20. doi: 10.1007/s10695-015-0080-7. Epub 2015 Jun 2.
8
Osmoregulatory bicarbonate secretion exploits H(+)-sensitive haemoglobins to autoregulate intestinal O2 delivery in euryhaline teleosts.
J Comp Physiol B. 2014 Oct;184(7):865-76. doi: 10.1007/s00360-014-0844-x. Epub 2014 Aug 27.

本文引用的文献

1
Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R870-6. doi: 10.1152/ajpregu.00513.2009. Epub 2010 Feb 3.
2
Post-prandial metabolic alkalosis in the seawater-acclimated trout: the alkaline tide comes in.
J Exp Biol. 2009 Jul;212(Pt 14):2159-66. doi: 10.1242/jeb.027862.
5
Contribution of fish to the marine inorganic carbon cycle.
Science. 2009 Jan 16;323(5912):359-62. doi: 10.1126/science.1157972.
6
Gastrointestinal blood flow and postprandial metabolism in swimming sea bass Dicentrarchus labrax.
Physiol Biochem Zool. 2008 Sep-Oct;81(5):663-72. doi: 10.1086/588488.
8
The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout.
J Exp Biol. 2008 Aug;211(Pt 15):2533-41. doi: 10.1242/jeb.015610.
10
Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish.
Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1402-12. doi: 10.1152/ajpregu.00759.2007. Epub 2008 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验