University of Exeter, Exeter EX4 4PS, UK.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R870-6. doi: 10.1152/ajpregu.00513.2009. Epub 2010 Feb 3.
Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO(3)(-)) secretion and Cl(-) absorption via Cl(-)/HCO(3)(-) exchange fueled by metabolic CO(2); and 3) alkaline precipitation of Ca(2+) as insoluble CaCO(3), which aids H(2)O absorption). The latter two processes involve high rates of epithelial HCO(3)(-) secretion stimulated by intestinal Ca(2+) and can drive a major portion of water absorption. At higher salinities and ambient Ca(2+) concentrations the osmoregulatory role of intestinal HCO(3)(-) secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO(2)) and acid-base regulation (as intestinal cells must export H(+) into the blood to balance apical HCO(3)(-) secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca(2+). Increasing the luminal Ca(2+) concentration caused a large elevation in intestinal HCO(3)(-) production and excretion. Additionally, blood pH decreased (-0.13 pH units) and plasma partial pressure of CO(2) (Pco(2)) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca(2+)] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO(3)(-) production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca(2+) independent of any other ion or overall osmolality in marine teleost fish.
海洋硬骨鱼类为了防止脱水而持续摄入海水,它们的肠道通过与三种独立驱动力相关的机制吸收液体:1)从肠道液中共同转运 NaCl;2)通过代谢 CO2 驱动的 Cl-/HCO3-交换分泌 HCO3-和吸收 Cl-;3)碱性沉淀 Ca2+为不溶性 CaCO3,有助于 H2O 吸收)。后两个过程涉及由肠道 Ca2+刺激的高上皮 HCO3-分泌率,可驱动大部分水吸收。在较高的盐度和环境 Ca2+浓度下,肠道 HCO3-分泌的渗透调节作用增强,但这对其他生理过程有影响,特别是呼吸气体运输(因为它由代谢 CO2 提供动力)和酸碱调节(因为肠道细胞必须将 H+输出到血液中以平衡顶端 HCO3-分泌)。用含有 10、40 或 90 mM Ca2+的生理盐水对鲽鱼肠进行体内灌注。增加腔室 Ca2+浓度会导致肠道 HCO3-产生和排泄大量增加。此外,在灌注 3 天后,最高 Ca 灌注液水平下,血液 pH 值降低(-0.13 pH 单位),血浆二氧化碳分压(Pco2)水平升高(+1.16 mmHg)。增加灌流液[Ca2+]也会导致通过鳃的净酸排泄成比例增加。当计算所有离子通过肠道的净肠内通量时,阴离子的吸收大于阳离子。假设这种缺失的阳离子通量是质子,它与通过鳃的净酸排泄几乎呈 1:1 的关系。这项研究说明了肠道 HCO3-产生与酸碱平衡和呼吸气体交换的渗透压调节之间的密切联系,以及摄入的 Ca2+在海洋硬骨鱼类中的特定控制作用,独立于任何其他离子或整体渗透压。