Suppr超能文献

重建近红外拉曼组织光谱中主成分载荷的信噪比贡献。

Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.

机构信息

Dept. of Urology, University Medical Centre Utrecht, The Netherlands.

出版信息

Appl Spectrosc. 2010 Jan;64(1):8-14. doi: 10.1366/000370210790572052.

Abstract

The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.

摘要

在过去的十年中,各种光学仪器的改进使得近红外区域(通常用于研究生物样本)的拉曼光谱整体质量得到了提高。然而,由于设备要求和(体内)拉曼光谱临床应用所需的短积分时间,获得足够的光谱质量仍然具有挑战性。多元分析方法,如主成分分析(PCA)和线性判别分析(LDA),通常应用于拉曼光谱数据集以开发分类模型。在进行判别分析之前,需要对数据进行压缩,以防止或减少过度拟合的程度。用于判别分析的主成分(PC)的逻辑阈值很可能在 PC 开始引入等效信号和噪声之前,因此不包含任何额外的价值。在某个峰或特定光谱区域评估信噪比(SNR)将取决于所测量的样本。因此,在原始光谱中以及从越来越多的主成分重建的光谱中,确定整个光谱区域(SNR(msr))的平均 SNR。本文介绍了一种评估单个 PC 负载的信号和噪声影响的方法,并指出了用于 LDA 的 PC 选择方法。为了评估该方法,使用了两个具有不同 SNR 的数据集。这些数据集是使用相同的拉曼系统和相同的测量参数在白光膀胱镜检查期间收集的膀胱组织上获得的(数据集 A)和荧光引导膀胱镜检查(数据集 B)。该方法表明,这两个数据集的原始拉曼光谱中整个光谱范围内的平均 SNR 与主成分负载的信号和噪声贡献有关。由于在低 SNR 数据集(数据集 B)中可以更可靠地使用较少的主成分,因此可以看出整个光谱范围内的平均 SNR 差异。尽管没有找到明确的阈值,但该方法可能有助于确定在判别分析中使用的主成分数量的截止值。使用该技术对一系列光谱数据库进行的进一步分析将允许为不同的应用程序和光谱数据质量水平选择最佳阈值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验