The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UCL, 12 Queen Square, London, UK WC1N 3BG, UK.
Neuroimage. 2010 May 15;51(1):91-101. doi: 10.1016/j.neuroimage.2010.01.098. Epub 2010 Feb 2.
In this paper, we compare mean-field and neural-mass models of electrophysiological responses using Bayesian model comparison. In previous work, we presented a mean-field model of neuronal dynamics as observed with magnetoencephalography and electroencephalography. Unlike neural-mass models, which consider only the mean activity of neuronal populations, mean-field models track the distribution (e.g., mean and dispersion) of population activity. This can be important if the mean affects the dispersion or vice versa. Here, we introduce a dynamical causal model based on mean-field (i.e., population density) models of neuronal activity, and use it to assess the evidence for a coupling between the mean and dispersion of hidden neuronal states using observed electromagnetic responses. We used Bayesian model comparison to compare homologous mean-field and neural-mass models, asking whether empirical responses support a role for population variance in shaping neuronal dynamics. We used the mismatch negativity (MMN) and somatosensory evoked potentials (SEP) as representative neuronal responses in physiological and non-physiological paradigms respectively. Our main conclusion was that although neural-mass models may be sufficient for cognitive paradigms, there is clear evidence for an effect of dispersion at the high levels of depolarization evoked in SEP paradigms. This suggests that (i) the dispersion of neuronal states within populations generating evoked brain signals can be manifest in observed brain signals and that (ii) the evidence for their effects can be accessed with dynamic causal model comparison.
在本文中,我们使用贝叶斯模型比较来比较电生理反应的平均场和神经质量模型。在之前的工作中,我们提出了一种使用脑磁图和脑电图观察到的神经元动力学的平均场模型。与仅考虑神经元群体平均活动的神经质量模型不同,平均场模型跟踪群体活动的分布(例如,均值和离散度)。如果均值影响离散度或反之亦然,这可能很重要。在这里,我们引入了一种基于神经元活动的平均场(即群体密度)模型的动力因果模型,并使用它来评估观察到的电磁响应中隐藏神经元状态的均值和离散度之间的耦合是否存在证据。我们使用贝叶斯模型比较来比较同源的平均场和神经质量模型,询问经验响应是否支持群体方差在塑造神经元动力学中的作用。我们使用失匹配负波(MMN)和体感诱发电位(SEP)分别作为生理和非生理范式中的代表性神经元响应。我们的主要结论是,尽管神经质量模型可能足以用于认知范式,但在 SEP 范式中诱发的高去极化水平上,离散度的影响有明显的证据。这表明:(i)在产生诱发脑信号的群体中神经元状态的离散度可以在观察到的脑信号中表现出来,并且(ii)可以使用动态因果模型比较来访问其影响的证据。