Suppr超能文献

脑电图和脑磁图的动态因果模型

Dynamic causal modeling for EEG and MEG.

作者信息

Kiebel Stefan J, Garrido Marta I, Moran Rosalyn, Chen Chun-Chuan, Friston Karl J

机构信息

The Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, United Kingdom.

出版信息

Hum Brain Mapp. 2009 Jun;30(6):1866-76. doi: 10.1002/hbm.20775.

Abstract

We present a review of dynamic causal modeling (DCM) for magneto- and electroencephalography (M/EEG) data. DCM is based on a spatiotemporal model, where the temporal component is formulated in terms of neurobiologically plausible dynamics. Following an intuitive description of the model, we discuss six recent studies, which use DCM to analyze M/EEG and local field potentials. These studies illustrate how DCM can be used to analyze evoked responses (average response in time), induced responses (average response in time-frequency), and steady-state responses (average response in frequency). Bayesian model comparison plays a critical role in these analyses, by allowing one to compare equally plausible models in terms of their model evidence. This approach might be very useful in M/EEG research; where correlations among spatial and neuronal model parameter estimates can cause uncertainty about which model best explains the data. Bayesian model comparison resolves these uncertainties in a principled and formal way. We suggest that DCM and Bayesian model comparison provides a useful way to test hypotheses about distributed processing in the brain, using electromagnetic data.

摘要

我们对用于脑磁图和脑电图(M/EEG)数据的动态因果模型(DCM)进行综述。DCM基于一个时空模型,其中时间成分是根据神经生物学上合理的动力学来表述的。在对该模型进行直观描述之后,我们讨论了六项近期研究,这些研究使用DCM来分析M/EEG和局部场电位。这些研究说明了DCM如何可用于分析诱发反应(时间上的平均反应)、诱导反应(时频上的平均反应)和稳态反应(频率上的平均反应)。贝叶斯模型比较在这些分析中起着关键作用,它允许人们根据模型证据来比较同样合理的模型。这种方法在M/EEG研究中可能非常有用;在该研究领域中,空间和神经元模型参数估计之间的相关性可能会导致关于哪个模型最能解释数据的不确定性。贝叶斯模型比较以一种有原则且正式的方式解决了这些不确定性。我们认为,DCM和贝叶斯模型比较为利用电磁数据检验关于大脑分布式处理的假设提供了一种有用的方法。

相似文献

1
Dynamic causal modeling for EEG and MEG.脑电图和脑磁图的动态因果模型
Hum Brain Mapp. 2009 Jun;30(6):1866-76. doi: 10.1002/hbm.20775.
3
Dynamic causal modeling of evoked responses in EEG and MEG.脑电图(EEG)和脑磁图(MEG)诱发反应的动态因果模型
Neuroimage. 2006 May 1;30(4):1255-72. doi: 10.1016/j.neuroimage.2005.10.045. Epub 2006 Feb 9.
4
Dynamic causal modelling of distributed electromagnetic responses.分布式电磁响应的动态因果建模
Neuroimage. 2009 Aug 15;47(2):590-601. doi: 10.1016/j.neuroimage.2009.04.062. Epub 2009 May 3.
5
A mesostate-space model for EEG and MEG.一种用于脑电图(EEG)和脑磁图(MEG)的介观状态空间模型。
Neuroimage. 2007 Oct 15;38(1):67-81. doi: 10.1016/j.neuroimage.2007.06.034. Epub 2007 Jul 24.
6
Critical comments on dynamic causal modelling.动态因果建模的批判性评论。
Neuroimage. 2012 Feb 1;59(3):2322-9. doi: 10.1016/j.neuroimage.2011.09.025. Epub 2011 Sep 22.
7
EEG and MEG data analysis in SPM8.SPM8 中的 EEG 和 MEG 数据分析。
Comput Intell Neurosci. 2011;2011:852961. doi: 10.1155/2011/852961. Epub 2011 Mar 6.
9
Dynamic causal modelling of evoked potentials: a reproducibility study.诱发电位的动态因果模型:一项可重复性研究。
Neuroimage. 2007 Jul 1;36(3):571-80. doi: 10.1016/j.neuroimage.2007.03.014. Epub 2007 Mar 27.

引用本文的文献

4
From rubber hands to neuroprosthetics: Neural correlates of embodiment.从橡胶手到神经假体:具身认知的神经关联
Neurosci Biobehav Rev. 2023 Oct;153:105351. doi: 10.1016/j.neubiorev.2023.105351. Epub 2023 Aug 6.
5
Global nonlinear approach for mapping parameters of neural mass models.全局非线性方法用于映射神经质量模型的参数。
PLoS Comput Biol. 2023 Mar 24;19(3):e1010985. doi: 10.1371/journal.pcbi.1010985. eCollection 2023 Mar.
10
Neurocomputational Underpinnings of Expected Surprise.神经计算学对预期惊喜的基础研究。
J Neurosci. 2022 Jan 19;42(3):474-486. doi: 10.1523/JNEUROSCI.0601-21.2021. Epub 2021 Nov 24.

本文引用的文献

1
Population dynamics under the Laplace assumption.拉普拉斯假设下的种群动态
Neuroimage. 2009 Feb 1;44(3):701-14. doi: 10.1016/j.neuroimage.2008.10.008. Epub 2008 Oct 25.
2
Dynamic causal modelling for EEG and MEG.脑电和脑磁图的动态因果建模。
Cogn Neurodyn. 2008 Jun;2(2):121-36. doi: 10.1007/s11571-008-9038-0. Epub 2008 Apr 23.
3
Dynamic causal models of steady-state responses.稳态反应的动态因果模型
Neuroimage. 2009 Feb 1;44(3):796-811. doi: 10.1016/j.neuroimage.2008.09.048. Epub 2008 Oct 17.
6
Population dynamics: variance and the sigmoid activation function.种群动态:方差与S型激活函数
Neuroimage. 2008 Aug 1;42(1):147-57. doi: 10.1016/j.neuroimage.2008.04.239. Epub 2008 Apr 29.
8
Dynamic causal modelling of induced responses.诱发反应的动态因果模型
Neuroimage. 2008 Jul 15;41(4):1293-312. doi: 10.1016/j.neuroimage.2008.03.026. Epub 2008 Mar 28.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验