Kiebel Stefan J, Garrido Marta I, Moran Rosalyn, Chen Chun-Chuan, Friston Karl J
The Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, United Kingdom.
Hum Brain Mapp. 2009 Jun;30(6):1866-76. doi: 10.1002/hbm.20775.
We present a review of dynamic causal modeling (DCM) for magneto- and electroencephalography (M/EEG) data. DCM is based on a spatiotemporal model, where the temporal component is formulated in terms of neurobiologically plausible dynamics. Following an intuitive description of the model, we discuss six recent studies, which use DCM to analyze M/EEG and local field potentials. These studies illustrate how DCM can be used to analyze evoked responses (average response in time), induced responses (average response in time-frequency), and steady-state responses (average response in frequency). Bayesian model comparison plays a critical role in these analyses, by allowing one to compare equally plausible models in terms of their model evidence. This approach might be very useful in M/EEG research; where correlations among spatial and neuronal model parameter estimates can cause uncertainty about which model best explains the data. Bayesian model comparison resolves these uncertainties in a principled and formal way. We suggest that DCM and Bayesian model comparison provides a useful way to test hypotheses about distributed processing in the brain, using electromagnetic data.
我们对用于脑磁图和脑电图(M/EEG)数据的动态因果模型(DCM)进行综述。DCM基于一个时空模型,其中时间成分是根据神经生物学上合理的动力学来表述的。在对该模型进行直观描述之后,我们讨论了六项近期研究,这些研究使用DCM来分析M/EEG和局部场电位。这些研究说明了DCM如何可用于分析诱发反应(时间上的平均反应)、诱导反应(时频上的平均反应)和稳态反应(频率上的平均反应)。贝叶斯模型比较在这些分析中起着关键作用,它允许人们根据模型证据来比较同样合理的模型。这种方法在M/EEG研究中可能非常有用;在该研究领域中,空间和神经元模型参数估计之间的相关性可能会导致关于哪个模型最能解释数据的不确定性。贝叶斯模型比较以一种有原则且正式的方式解决了这些不确定性。我们认为,DCM和贝叶斯模型比较为利用电磁数据检验关于大脑分布式处理的假设提供了一种有用的方法。