Suppr超能文献

动态因果建模的 10 个简单规则。

Ten simple rules for dynamic causal modeling.

机构信息

Laboratory for Social and Neural Systems Research, Institute for Empirical Research in Economics, University of Zurich, Zurich, Switzerland.

出版信息

Neuroimage. 2010 Feb 15;49(4):3099-109. doi: 10.1016/j.neuroimage.2009.11.015. Epub 2009 Nov 12.

Abstract

Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities such as the effective strength of synaptic connections among neuronal populations and their context-dependent modulation. DCM is increasingly used in the analysis of a wide range of neuroimaging and electrophysiological data. Given the relative complexity of DCM, compared to conventional analysis techniques, a good knowledge of its theoretical foundations is needed to avoid pitfalls in its application and interpretation of results. By providing good practice recommendations for DCM, in the form of ten simple rules, we hope that this article serves as a helpful tutorial for the growing community of DCM users.

摘要

动态因果建模(DCM)是一种从大脑活动测量中推断隐藏神经元状态的通用贝叶斯框架。它提供了神经生物学可解释的量的后验估计,例如神经元群体之间的突触连接的有效强度及其上下文相关的调制。DCM 越来越多地用于分析各种神经影像学和电生理学数据。与传统的分析技术相比,由于 DCM 相对复杂,因此需要很好地了解其理论基础,以避免在应用和解释结果时出现陷阱。通过以十个简单规则的形式为 DCM 提供良好的实践建议,我们希望本文能够为不断壮大的 DCM 用户群体提供有用的教程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ce8/2846454/7cbf89dc90f7/gr1.jpg

相似文献

1
Ten simple rules for dynamic causal modeling.
Neuroimage. 2010 Feb 15;49(4):3099-109. doi: 10.1016/j.neuroimage.2009.11.015. Epub 2009 Nov 12.
2
Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power spectral densities.
Neuroimage. 2021 Dec 15;245:118662. doi: 10.1016/j.neuroimage.2021.118662. Epub 2021 Oct 20.
3
Understanding DCM: ten simple rules for the clinician.
Neuroimage. 2013 Dec;83:542-9. doi: 10.1016/j.neuroimage.2013.07.008. Epub 2013 Jul 10.
4
Dynamic causal models of steady-state responses.
Neuroimage. 2009 Feb 1;44(3):796-811. doi: 10.1016/j.neuroimage.2008.09.048. Epub 2008 Oct 17.
5
Network discovery with DCM.
Neuroimage. 2011 Jun 1;56(3):1202-21. doi: 10.1016/j.neuroimage.2010.12.039. Epub 2010 Dec 21.
6
A unified Bayesian framework for MEG/EEG source imaging.
Neuroimage. 2009 Feb 1;44(3):947-66. doi: 10.1016/j.neuroimage.2008.02.059. Epub 2008 Mar 18.
7
Large-scale neural models and dynamic causal modelling.
Neuroimage. 2006 May 1;30(4):1243-54. doi: 10.1016/j.neuroimage.2005.11.007. Epub 2006 Jan 4.
8
Anatomically informed bayesian model selection for fMRI group data analysis.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):450-7. doi: 10.1007/978-3-642-04271-3_55.
10
Probabilistic framework for brain connectivity from functional MR images.
IEEE Trans Med Imaging. 2008 Jun;27(6):825-33. doi: 10.1109/TMI.2008.915672.

引用本文的文献

2
Abnormal resting-state effective connectivity of triple network predicts smoking motivations among males.
Front Psychiatry. 2025 Aug 14;16:1622162. doi: 10.3389/fpsyt.2025.1622162. eCollection 2025.
5
Interhemispheric integration in the neural face perception network: Does stimulus location matter?
Imaging Neurosci (Camb). 2025 May 29;3. doi: 10.1162/IMAG.a.17. eCollection 2025.
6
Revisiting the effective connectivity within the distributed cortical network for face perception.
Neuroimage Rep. 2021 Aug 17;1(4):100045. doi: 10.1016/j.ynirp.2021.100045. eCollection 2021 Dec.
7
Dynamic causal modeling of neural responses to an orofacial pneumotactile velocity array.
Neuroimage Rep. 2022 Jan 16;2(1):100081. doi: 10.1016/j.ynirp.2022.100081. eCollection 2022 Mar.
9
Habenula contributions to negative self-cognitions.
Nat Commun. 2025 May 7;16(1):4231. doi: 10.1038/s41467-025-59611-7.
10
"What" and "When" Predictions Jointly Modulate Speech Processing.
J Neurosci. 2025 May 14;45(20):e1049242025. doi: 10.1523/JNEUROSCI.1049-24.2025.

本文引用的文献

1
Comparing families of dynamic causal models.
PLoS Comput Biol. 2010 Mar 12;6(3):e1000709. doi: 10.1371/journal.pcbi.1000709.
2
Striatal prediction error modulates cortical coupling.
J Neurosci. 2010 Mar 3;30(9):3210-9. doi: 10.1523/JNEUROSCI.4458-09.2010.
3
Multi-subject analyses with dynamic causal modeling.
Neuroimage. 2010 Feb 15;49(4):3065-74. doi: 10.1016/j.neuroimage.2009.11.037. Epub 2009 Nov 23.
4
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.
Physica D. 2009 Nov 1;238(21):2089-2118. doi: 10.1016/j.physd.2009.08.002.
5
Experience-dependent structural synaptic plasticity in the mammalian brain.
Nat Rev Neurosci. 2009 Sep;10(9):647-58. doi: 10.1038/nrn2699.
6
Dynamic Causal Models for phase coupling.
J Neurosci Methods. 2009 Sep 30;183(1):19-30. doi: 10.1016/j.jneumeth.2009.06.029. Epub 2009 Jul 2.
7
Changing meaning causes coupling changes within higher levels of the cortical hierarchy.
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11765-70. doi: 10.1073/pnas.0811402106. Epub 2009 Jun 24.
8
Repetition suppression and plasticity in the human brain.
Neuroimage. 2009 Oct 15;48(1):269-79. doi: 10.1016/j.neuroimage.2009.06.034. Epub 2009 Jun 21.
9
Tractography-based priors for dynamic causal models.
Neuroimage. 2009 Oct 1;47(4):1628-38. doi: 10.1016/j.neuroimage.2009.05.096. Epub 2009 Jun 10.
10
Selecting forward models for MEG source-reconstruction using model-evidence.
Neuroimage. 2009 May 15;46(1):168-76. doi: 10.1016/j.neuroimage.2009.01.062. Epub 2009 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验