Instituto Nacional del Carbón, CSIC, Apartado 73, 33080 Oviedo, Spain.
J Colloid Interface Sci. 2010 Apr 15;344(2):451-9. doi: 10.1016/j.jcis.2010.01.018. Epub 2010 Jan 18.
The etching of graphite surfaces by two different types of oxidative treatments, namely dielectric barrier discharge (DBD) air plasma and ultraviolet-generated ozone (UVO), has been investigated and compared by means of scanning tunneling microscopy (STM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Although the attack is initiated in both cases with the formation of individual, isolated atomic-scale defects (in particular, atomic vacancies), its subsequent evolution indicated that different mechanisms drive the surface modification in the two types of treatment, which greatly differ in etching selectivity. Thus, physical processes (i.e., ion bombardment) dominate the attack by DBD air plasma, which are not present in the case of UVO oxidation. The effects of the different etching mechanisms on the graphite surface structure, as visualized by STM down to the atomic scale, are discussed and found to be consistent with the Raman spectroscopy and XPS data. This type of information can be relevant when selecting the most appropriate type of surface modification of carbon materials for specific purposes.
通过扫描隧道显微镜(STM)、拉曼光谱和 X 射线光电子能谱(XPS)研究并比较了两种不同的氧化处理方法,即介质阻挡放电(DBD)空气等离子体和紫外光生成的臭氧(UVO)对石墨表面的刻蚀。尽管在这两种情况下,攻击都是从形成单个孤立的原子尺度缺陷(特别是原子空位)开始的,但随后的演变表明,两种处理方式的表面改性机制不同,它们在刻蚀选择性上有很大的差异。因此,物理过程(即离子轰击)主导了 DBD 空气等离子体的攻击,而在 UVO 氧化的情况下则不存在这些过程。通过 STM 以原子级分辨率观察到的不同刻蚀机制对石墨表面结构的影响,并与拉曼光谱和 XPS 数据进行了讨论,结果发现它们是一致的。当为特定目的选择最适合的碳材料表面改性类型时,这种类型的信息可能是相关的。