Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3805-10. doi: 10.1073/pnas.0914422107. Epub 2010 Feb 3.
Proteins of the PSD-95-like membrane-associated guanylate kinase (PSD-MAGUK) family are vital for trafficking AMPA receptors (AMPARs) to synapses, a process necessary for both basal synaptic transmission and forms of synaptic plasticity. Synapse-associated protein 97 (SAP97) exhibits protein interactions, such as direct interaction with the GluA1 AMPAR subunit, and subcellular localization (synaptic, perisynaptic, and dendritic) unique within this protein family. Due in part to the lethality of the germline knockout of SAP97, this protein's role in synaptic transmission and plasticity is poorly understood. We found that overexpression of SAP97 during early development traffics AMPARs and NMDA receptors (NMDARs) to synapses, and that SAP97 rescues the deficits in AMPAR currents normally seen in PSD-93/-95 double-knockout neurons. Mature neurons that have experienced the overexpression of SAP97 throughout development exhibit enhanced AMPAR and NMDAR currents, as well as faster NMDAR current decay kinetics. In loss-of-function experiments using conditional SAP97 gene deletion, we recorded no deficits in glutamatergic transmission or long-term potentiation. These results support the hypothesis that SAP97 is part of the machinery that traffics glutamate receptors and compensates for other PSD-MAGUKs in knockout mouse models. However, due to functional redundancy, other PSD-MAGUKs can presumably compensate when SAP97 is conditionally deleted during development.
突触后密度蛋白 95 样膜相关鸟苷酸激酶(PSD-MAGUK)家族的蛋白对于 AMPA 受体(AMPAR)向突触的转运至关重要,这是基础突触传递和突触可塑性形式所必需的过程。突触相关蛋白 97(SAP97)表现出蛋白相互作用,例如与 GluA1 AMPAR 亚基的直接相互作用,以及在该蛋白家族中独特的亚细胞定位(突触、突触周和树突)。部分由于 SAP97 种系敲除的致死性,该蛋白在突触传递和可塑性中的作用知之甚少。我们发现,SAP97 在早期发育过程中的过表达会将 AMPAR 和 NMDA 受体(NMDAR)转运到突触,并且 SAP97 可以挽救 PSD-93/-95 双敲除神经元中通常观察到的 AMPAR 电流缺陷。在整个发育过程中经历 SAP97 过表达的成熟神经元表现出增强的 AMPAR 和 NMDAR 电流,以及更快的 NMDAR 电流衰减动力学。在使用条件性 SAP97 基因缺失的功能丧失实验中,我们没有记录到谷氨酸能传递或长时程增强的缺陷。这些结果支持 SAP97 是转运谷氨酸受体的机制的一部分的假说,并在 knockout 小鼠模型中补偿其他 PSD-MAGUK 的假说。然而,由于功能冗余,当 SAP97 在发育过程中被条件性删除时,其他 PSD-MAGUK 可能会代偿。