Suppr超能文献

计算机辅助设计和合成四芳基取代的烯烃及其作为雌激素相关受体 γ 的选择性调节剂的生物评价。

Computer-aided design and synthesis of tetra-aryl-substituted alkenes and their bioevaluation as a selective modulator of estrogen-related receptor γ.

机构信息

Department of Chemistry, Seoul National University, Seoul, 151-747, Korea.

出版信息

Mol Divers. 2011 Feb;15(1):69-81. doi: 10.1007/s11030-010-9224-y. Epub 2010 Feb 5.

Abstract

This study reports on a translational exercise in computer-aided rational drug design, chemical synthesis, and bioevaluation using a cell-based reporter gene assay, pursued exclusively for the development of specific estrogen-related receptor γ (ERR γ) inverse agonists with selectivity over estrogen receptor α (ER α). We designed and synthesized a 9-membered small-molecule collection, which has, as the key molecular framework, tetra-aryl-substituted alkene derived from 4-hydroxytamoxifen (4-OHT), a known ERR γ inverse agonist and antagonist of ER α. Although we could not achieve a more potent inverse agonist than GSK5182 from our compound collection, we demonstrated a reasonable correlation between the in silico docking simulation and biological data of transcriptional regulation on nuclear receptors. Therefore, we suggest that structural information regarding proteins-of-interest provides a novel insight into the rational design of new therapeutic agents and that the utilization of docking simulation as a preliminary filtering tool might be a useful option for medicinal chemists or chemical biologists.

摘要

本研究报告了一项计算机辅助合理药物设计、化学合成和基于细胞报告基因检测的生物评价的转化研究,该研究专门针对具有选择性的特定雌激素相关受体 γ(ERR γ)反向激动剂的开发而进行,其对雌激素受体 α(ER α)具有选择性。我们设计并合成了一个 9 元小分子化合物库,该化合物库的关键分子骨架来自于已知的 ERR γ 反向激动剂和 ER α 拮抗剂 4-羟基他莫昔芬(4-OHT)的四芳基取代烯烃。尽管我们无法从化合物库中获得比 GSK5182 更有效的反向激动剂,但我们证明了计算机对接模拟与核受体转录调控的生物学数据之间存在合理的相关性。因此,我们认为关于靶蛋白的结构信息为新治疗剂的合理设计提供了新的见解,并且将对接模拟用作初步筛选工具可能是药物化学家和化学生物学家的一个有用选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验