Suppr超能文献

电活动对骨骼肌基因调控的起伏变化。

The ups and downs of gene regulation by electrical activity in skeletal muscles.

机构信息

Department of Molecular Biosciences, University of Oslo, Oslo, Norway.

出版信息

J Muscle Res Cell Motil. 2009 Dec;30(7-8):255-60. doi: 10.1007/s10974-010-9200-2. Epub 2010 Feb 5.

Abstract

Adult skeletal muscles retain an adaptive capacity to switch between slow- and fast-twitch properties that are largely dependent on motoneuron activity. Our studies on the transcriptional regulation of the Troponin I slow (TnIs) and fast (TnIf) genes uncovered a dual mechanism of transcriptional enhancement and repression by a single activity pattern, that promotes the phenotypic differences among myofibers while preserving their adaptive capacity. Using the Tnf Fast Intronic Regulatory Element (FIRE), we initially demonstrated that fast-patterned activity (infrequent, high frequency depolarization) is necessary to up-regulate FIRE-dependent transcription and that its effect differs dramatically from muscle denervation. Hence, the "fast muscle program" is not a default state mimicked simply by denervation or muscle inactivity. Next, we found that slow-patterned activity (tonic, slow frequency stimulation) selectively represses FIRE-dependent transcription while enhancing transcription from the TnIs Slow Upstream Regulatory Element. Unexpectedly, repression of the TnIf FIRE by slow-patterned activity is mediated by an NFAT element that directly binds NFATc1, a transcription factor that translocates to the nucleus selectively by slow-pattern depolarization and has been implicated in the up-regulation of the slow muscle program. Transfection of siRNAs targeting NFATc1 or mutation of the TnIFIRE NFAT site result in the upregulation of FIRE-dependent transcription in slow muscle, but have no effect in fast muscle. These findings demonstrate a novel function of NFAT as a repressor of transcription of fast contractile genes in slow muscles and, more importantly, they illustrate how specific activity patterns can enhance the phenotypic differences among fibre-types by differentially regulating transcription in a use-dependent manner while retaining the adaptive properties of adult muscles.

摘要

成人骨骼肌肉保留了在慢肌和快肌特性之间转换的适应能力,而这种能力在很大程度上依赖于运动神经元的活动。我们在肌钙蛋白 I 慢(TnIs)和快(TnIf)基因的转录调控研究中发现了一种单一活动模式促进肌纤维表型差异的同时保留其适应能力的转录增强和抑制的双重机制。我们利用肌钙蛋白 I 快肌内含子调控元件(FIRE),最初证明了快模式活动(低频、高频去极化)是上调 FIRE 依赖性转录所必需的,其效果与肌肉失神经支配有很大的不同。因此,“快肌程序”不是简单地通过失神经支配或肌肉失活模拟的默认状态。接下来,我们发现慢模式活动(紧张,低频刺激)选择性地抑制 FIRE 依赖性转录,同时增强 TnIs 慢上游调控元件的转录。出乎意料的是,慢模式活动对 TnIf FIRE 的抑制是由 NFAT 元件介导的,NFAT 元件直接结合 NFATc1,NFATc1 是一种转录因子,通过慢模式去极化选择性地向核内易位,并与慢肌程序的上调有关。针对 NFATc1 的 siRNA 转染或 TnIFIRE NFAT 位点的突变导致慢肌中 FIRE 依赖性转录的上调,但在快肌中没有作用。这些发现表明 NFAT 作为一种转录抑制因子具有新的功能,可在慢肌中抑制快收缩基因的转录,更重要的是,它们说明了特定的活动模式如何通过以使用依赖性的方式差异调节转录来增强纤维类型之间的表型差异,同时保留成人肌肉的适应能力。

相似文献

1
The ups and downs of gene regulation by electrical activity in skeletal muscles.
J Muscle Res Cell Motil. 2009 Dec;30(7-8):255-60. doi: 10.1007/s10974-010-9200-2. Epub 2010 Feb 5.
2
Activity-dependent repression of muscle genes by NFAT.
Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5921-6. doi: 10.1073/pnas.0801330105. Epub 2008 Apr 11.
3
Transcriptional control of muscle plasticity: differential regulation of troponin I genes by electrical activity.
Dev Genet. 1996;19(2):169-81. doi: 10.1002/(SICI)1520-6408(1996)19:2<169::AID-DVG9>3.0.CO;2-7.
6
NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching.
Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10590-5. doi: 10.1073/pnas.0308035101. Epub 2004 Jul 9.
7
Fiber-type-specific transcription of the troponin I slow gene is regulated by multiple elements.
Mol Cell Biol. 1999 Jan;19(1):515-25. doi: 10.1128/MCB.19.1.515.
8
Molecular dissection of DNA sequences and factors involved in slow muscle-specific transcription.
Mol Cell Biol. 2001 Dec;21(24):8490-503. doi: 10.1128/MCB.21.24.8490-8503.2001.
10
Developmental regulation of troponin I isoform genes in striated muscles of transgenic mice.
Dev Biol. 1995 Jun;169(2):487-503. doi: 10.1006/dbio.1995.1163.

引用本文的文献

2
Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People.
Gerontol Geriatr Med. 2018 Apr 10;4:2333721418768998. doi: 10.1177/2333721418768998. eCollection 2018 Jan-Dec.
3
Sternopygus macrurus electric organ transcriptome and cell size exhibit insensitivity to short-term electrical inactivity.
J Physiol Paris. 2016 Oct;110(3 Pt B):233-244. doi: 10.1016/j.jphysparis.2016.11.005. Epub 2016 Nov 15.
4
Properties of skeletal muscle in the teleost Sternopygus macrurus are unaffected by short-term electrical inactivity.
Physiol Genomics. 2016 Sep 1;48(9):699-710. doi: 10.1152/physiolgenomics.00068.2016. Epub 2016 Jul 22.
5
The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle.
Mol Metab. 2015 Sep 25;4(11):823-33. doi: 10.1016/j.molmet.2015.09.004. eCollection 2015 Nov.
6
Developing electrical properties of postnatal mouse lumbar motoneurons.
Front Cell Neurosci. 2015 Sep 2;9:349. doi: 10.3389/fncel.2015.00349. eCollection 2015.
8
Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus.
J Exp Biol. 2013 Jul 1;216(Pt 13):2469-77. doi: 10.1242/jeb.082404.

本文引用的文献

1
Activity-dependent repression of muscle genes by NFAT.
Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5921-6. doi: 10.1073/pnas.0801330105. Epub 2008 Apr 11.
2
Activity-dependent signaling pathways controlling muscle diversity and plasticity.
Physiology (Bethesda). 2007 Aug;22:269-78. doi: 10.1152/physiol.00009.2007.
3
Differential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading.
Am J Physiol Cell Physiol. 2007 Mar;292(3):C1192-203. doi: 10.1152/ajpcell.00462.2006. Epub 2006 Nov 15.
5
Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy.
Sci STKE. 2004 Jul 27;2004(244):re11. doi: 10.1126/stke.2442004re11.
6
Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses.
J Physiol. 1960 Feb;150(2):417-39. doi: 10.1113/jphysiol.1960.sp006395.
7
Molecular regulation of individual skeletal muscle fibre types.
Acta Physiol Scand. 2003 Aug;178(4):413-24. doi: 10.1046/j.1365-201X.2003.01158.x.
9
Molecular dissection of DNA sequences and factors involved in slow muscle-specific transcription.
Mol Cell Biol. 2001 Dec;21(24):8490-503. doi: 10.1128/MCB.21.24.8490-8503.2001.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验