Calvo S, Stauffer J, Nakayama M, Buonanno A
Unit on Molecular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA.
Dev Genet. 1996;19(2):169-81. doi: 10.1002/(SICI)1520-6408(1996)19:2<169::AID-DVG9>3.0.CO;2-7.
Plasticity of the skeletal muscle phenotype can result from the selective repression and activation of gene expression in response to innervation patterns. Motoneurons, eliciting different patterns of depolarization, regulate the contractile properties of the myofibers they innervate by selectively activating expression of genes encoding fiber-type-specific (fast vs. slow) contractile proteins. We have analyzed the regulation of the troponin I slow (TnIs) and fast (TnIf) genes as a model to study the molecular mechanisms regulating fiber-type plasticity. We found that expression of the two TnI isoforms is downregulated by denervation. Moreover, TnI expression is upregulated by specific patterns of electrical activity [10 Hz vs. 100 Hz] used to depolarize muscle. We previously isolated the rat TnIs gene and demonstrated that regulatory sequences reside in its upstream region and second intron [Banerjee-Basu S, Buonanno A (1993), Mol Cell Biol 12:5024-5032]. Using transgenic mice, we show that the upstream region of the TnIs gene extending from -949 to +50 is sufficient to confer transcription specifically in slowtwitch muscles. Serial deletions of the TnIs upstream and intronic regions were generated in a CAT reporter vector to delineate transcriptional regulatory elements in transiently transfected Sol8 myotubes. Sequences necessary to confer the highest levels of TnIs transcription mapped to the upstream region between -0.95 and -0.72 kb, and to a 56 bp sequence located in the second intron. Comparison of the at sequence between -0.95 and -0.72 to the human TnIs gene identified a highly homologous region of 128 bp that we named the TnI SURE (slow upstream regulatory element). Alignment of these two SURE sequences with the quail TnI fast intronic regulatory element identified common motifs, namely, two A/T-rich sequences (A/T1 and A/T2) with homology to homeotic protein and MEF2 binding sites, a CACC box, an E box, and a novel motif (GCAGGCA) that we denoted the CAGG box. Mutation of either the A/T2 site, E box, or CAGG box practically abolish the SURE function in transfected myotubes; mutation of the A/T1 and CACC sites has a lesser effect. Using competitive electrophoretic mobility shift assays with nuclear extracts derived from Sol8 myotubes, we demonstrate specific binding to these motifs. The A/T1 and A/T2 sites are shown to form different complexes. The A/T2 site, which bears extensive homology to a MEF2 site, forms complexes that are super shifted by MEF2A antisera and that are competed by a consensus MEF2 site present in the MCK enhancer. Our results demonstrate that the linear arrangement of DNA sequence motifs is conserved in the regulatory elements of the TnI slow and fast genes and suggest that the interaction of multiple protein-DNA complexes are necessary for enhancer function.
骨骼肌表型的可塑性可源于对神经支配模式作出反应时基因表达的选择性抑制和激活。运动神经元引发不同的去极化模式,通过选择性激活编码纤维类型特异性(快肌纤维与慢肌纤维)收缩蛋白的基因的表达,来调节其支配的肌纤维的收缩特性。我们分析了肌钙蛋白I慢型(TnIs)和快型(TnIf)基因的调控,以此作为研究调节纤维类型可塑性分子机制的模型。我们发现,去神经支配会下调这两种TnI亚型的表达。此外,通过用于使肌肉去极化的特定电活动模式(10赫兹与100赫兹)可上调TnI的表达。我们之前分离出了大鼠TnIs基因,并证明其调控序列位于其上游区域和第二个内含子中[Banerjee - Basu S,Buonanno A(1993年),《分子与细胞生物学》12:5024 - 5032]。利用转基因小鼠,我们发现,TnIs基因从 - 949到 +50的上游区域足以赋予慢肌纤维特异性转录。在一个氯霉素乙酰转移酶(CAT)报告载体中对TnIs上游和内含子区域进行连续缺失,以描绘在瞬时转染的Sol8肌管中转录调控元件。赋予TnIs最高转录水平所需的序列定位于 - 0.95至 - 0.72千碱基对之间的上游区域以及位于第二个内含子中的一个56碱基对序列。将 - 0.95至 - 0.72之间的序列与人TnIs基因的该序列进行比较,鉴定出一个128碱基对的高度同源区域,我们将其命名为TnI慢上游调控元件(TnI SURE)。将这两个SURE序列与鹌鹑TnI快型内含子调控元件进行比对,鉴定出共同基序,即两个与同源异型蛋白和MEF2结合位点具有同源性的富含A/T的序列(A/T1和A/T2)、一个CACC框、一个E框以及一个我们命名为CAGG框的新基序(GCAGGCA)。A/T2位点、E框或CAGG框的突变实际上会消除转染肌管中的SURE功能;A/T1和CACC位点的突变影响较小。利用来自Sol8肌管的核提取物进行竞争性电泳迁移率变动分析,我们证明了对这些基序的特异性结合。A/T1和A/T2位点形成不同的复合物。与MEF2位点具有广泛同源性的A/T2位点形成的复合物可被MEF2A抗血清超迁移,并被MCK增强子中存在的一个共有MEF2位点竞争。我们的结果表明,DNA序列基序的线性排列在TnI慢型和快型基因的调控元件中是保守的,并表明多种蛋白质 - DNA复合物的相互作用对于增强子功能是必需的。