Suppr超能文献

低温傅里叶变换红外光谱研究菌紫质和类视紫红质光循环中的多个 K 中间态。

Low-temperature FTIR study of multiple K intermediates in the photocycles of bacteriorhodopsin and xanthorhodopsin.

机构信息

Department of Physiology & Biophysics, University of California, Irvine, California 92697, USA. 5R37GM029498),

出版信息

J Phys Chem B. 2010 Mar 4;114(8):2920-31. doi: 10.1021/jp908698f.

Abstract

Low-temperature FTIR spectroscopy of bacteriorhodopsin and xanthorhodopsin was used to elucidate the number of K-like bathochromic states, their sequence, and their contributions to the photoequilibrium mixtures created by illumination at 80-180 K. We conclude that in bacteriorhodopsin the photocycle includes three distinct K-like states in the sequence bR (hv)--> I* --> J --> K(0) --> K(E) --> L --> ..., and similarly in xanthorhodopsin. K(0) is the main fraction in the mixture at 77 K that is formed from J. K(0) becomes thermally unstable above approximately 50 K in both proteins. At 77 K, both J-to-K(0) and K(0)-to-K(E) transitions occur and, contrarily to long-standing belief, cryogenic trapping at 77 K does not produce a pure K state but a mixture of the two states, K(0) and K(E), with contributions from K(E) of approximately 15 and approximately 10% in the two retinal proteins, respectively. Raising the temperature leads to increasing conversion of K(0) to K(E), and the two states coexist (without contamination from non-K-like states) in the 80-140 K range in bacteriorhodopsin, and in the 80-190 K range in xanthorhodopsin. Temperature perturbation experiments in these regions of coexistence revealed that, in spite of the observation of apparently stable mixtures of K(0) and K(E), the two states are not in thermally controlled equilibrium. The K(0)-to-K(E) transition is unidirectional, and the partial transformation to K(E) is due to distributed kinetics, which governs the photocycle dynamics at temperatures below approximately 245 K (Dioumaev and Lanyi, Biochemistry 2008, 47, 11125-11133). From spectral deconvolution, we conclude that the K(E) state, which is increasingly present at higher temperatures, is the same intermediate that is detected by time-resolved FTIR prior to its decay, on a time scale of hundreds of nanoseconds at ambient temperature (Dioumaev and Braiman, J. Phys. Chem. B 1997, 101, 1655-1662), into the K(L) state. We were unable to trap the latter separately from K(E) at low temperature, due to the slow distributed kinetics and the increasingly faster overlapping formation of the L state. Formation of the two consecutive K-like states in both proteins is accompanied by distortion of two different weakly bound water molecules: one in K(0), the other in K(E). The first, well-documented in bacteriorhodopsin at 77 K where K(0) dominates, was assigned to water 401 in bacteriorhodopsin. The other water molecule, whose participation has not been described previously, is disturbed on the next step of the photocycle, in K(E), in both proteins. In bacteriorhodopsin, the most likely candidate is water 407. However, unlike bacteriorhodopsin, the crystal structure of xanthorhodopsin lacks homologous weakly bound water molecules.

摘要

利用低温 FTIR 光谱研究了菌紫质和类视黄醛的光谱,以阐明 K 型增色态的数量、顺序及其对 80-180 K 光照下形成的光平衡混合物的贡献。我们的结论是,在菌紫质中,光循环包括三个不同的 K 型态,其序列为 bR(hv)-> I* -> J -> K(0) -> K(E) -> L ->...,类视黄醛也是如此。在 77 K 时,混合物中的 K(0)是由 J 形成的主要部分。在两种蛋白质中,K(0)在大约 50 K 以上变得不稳定。在 77 K 时,J 到 K(0)和 K(0)到 K(E)的转变都会发生,与长期以来的观点相反,在 77 K 进行低温捕获不会产生纯 K 态,而是产生两种态的混合物,K(0)和 K(E),两种视网膜蛋白中的 K(E)分别约占 15%和 10%。升高温度会导致 K(0)向 K(E)的转化率增加,在 80-140 K 范围内,两种状态在菌紫质中共存,在 80-190 K 范围内在类视黄醛中共存。在共存区域的温度扰动实验表明,尽管观察到 K(0)和 K(E)的混合物似乎很稳定,但这两种状态并不处于热控制平衡状态。K(0)到 K(E)的转变是单向的,部分向 K(E)的转化是由于分布动力学,它控制着低于大约 245 K 的温度下的光循环动力学(Dioumaev 和 Lanyi,Biochemistry 2008,47,11125-11133)。从光谱反卷积,我们得出结论,在较高温度下越来越多的 K(E)态是在环境温度下以数百纳秒的时间尺度在其衰变之前通过时间分辨 FTIR 检测到的相同中间态(Dioumaev 和 Braiman,J. Phys. Chem. B 1997,101,1655-1662),进入 K(L)态。由于慢的分布动力学和越来越快的 L 态重叠形成,我们无法在低温下将后者与 K(E)分别捕获。两种蛋白中两个连续的 K 型态的形成伴随着两个不同的弱结合水分子的变形:一个在 K(0),另一个在 K(E)。在 77 K 的菌紫质中,第一个水分子已得到很好的描述,在 K(0)中占主导地位,被分配给菌紫质中的水 401。另一个水分子的参与以前没有描述过,在 K(E)中,在两种蛋白的下一个光循环步骤中受到干扰。在菌紫质中,最有可能的候选者是水 407。然而,与菌紫质不同的是,类视黄醛的晶体结构缺乏同源的弱结合水分子。

相似文献

本文引用的文献

4
5
Infrared monitoring of interlayer water in stacks of purple membranes.紫色膜堆叠中层间水的红外监测。
Photochem Photobiol. 2009 Mar-Apr;85(2):598-608. doi: 10.1111/j.1751-1097.2008.00512.x. Epub 2009 Jan 19.
10
Infrared spectroscopy of proteins.蛋白质的红外光谱学。
Biochim Biophys Acta. 2007 Sep;1767(9):1073-101. doi: 10.1016/j.bbabio.2007.06.004. Epub 2007 Jun 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验