Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
Biomacromolecules. 2010 Feb 8;11(2):439-42. doi: 10.1021/bm901160b.
Controlling self-assembly is critical to the advancement of nanotechnology. A rugged or crenated assembly energy surface can redirect assembly off path. By using a defined starting point and an energy surface made rough by a strong association energy, we can impose entirely new assembly paths and products. Normally, the coat protein (CP) of the Cowpea Chlorotic Mottle Virus (CCMV) assembles into virus-like 28 nm diameter icosahedral particles. Here we have started with the coat protein trapped in a rod-like structure in complex with DNA. When these 17 nm diameter rods are placed under the same condition, low pH, that normally leads to assembly of 28 nm diameter particles, we instead obtain 17 nm capsids. The extrusion of all-pentamer capsids from the hexagonal lattice of the rod demonstrates the importance of the starting state for controlled assembly.
控制自组装对于纳米技术的发展至关重要。崎岖或锯齿状的组装能垒表面可以使组装偏离路径。通过使用定义的起始点和由强缔合能产生的粗糙能垒表面,我们可以施加全新的组装路径和产物。通常情况下,豇豆花叶病毒(CCMV)的外壳蛋白(CP)组装成直径为 28nm 的病毒样二十面体颗粒。在这里,我们从与 DNA 复合的棒状结构中捕获的外壳蛋白开始。当这些 17nm 直径的棒在相同条件下放置时,即通常导致 28nm 直径颗粒组装的低 pH 条件下,我们反而得到 17nm 的衣壳。从棒的六边形晶格中挤出全五聚体衣壳证明了起始状态对受控组装的重要性。