Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Res Microbiol. 2010 Apr;161(3):192-7. doi: 10.1016/j.resmic.2010.01.006. Epub 2010 Feb 4.
ARISA (automated ribosomal intergenic spacer analysis) is a commonly used method for microbial community analysis that provides estimates of microbial richness and diversity. Here we investigated the potential biases of ARISA in richness estimation by performing computer simulations using 722 complete genomes. Our simulations based on in silico PCR demonstrated that over 8% of bacterial strains represented by complete genomes will never yield a PCR fragment using ARISA primers, usually because their ribosomal RNA genes are not organized in an operon. Despite the tendency of ARISA to overestimate species richness, a strong linear correlation exists between the observed number of fragments, even after binning, and the actual number of species in the sample. This linearity is fairly robust to the taxon sampling in the database as it is also observed on subsets of the 722 genome database using a jackknife approach. However, this linearity disappears when the species richness is high and binned fragment lengths gradually become saturated. We suggest that for ARISA-based richness estimates, where the number of binned lengths observed ranges between 10 and 116, a correction should be used in order to obtain more accurate "species richness" results comparable to 16S rRNA clone-library data.
ARISA(自动核糖体基因间隔分析)是一种常用于微生物群落分析的方法,可提供微生物丰富度和多样性的估计值。在这里,我们通过使用 722 个完整基因组进行计算机模拟,研究了 ARISA 在丰富度估计中的潜在偏差。我们基于计算机 PCR 的模拟表明,使用 ARISA 引物,超过 8%的完整基因组代表的细菌菌株将永远不会产生 PCR 片段,通常是因为它们的核糖体 RNA 基因不是操纵子组织的。尽管 ARISA 倾向于高估物种丰富度,但即使在分箱后,观察到的片段数量与样本中实际物种数量之间存在很强的线性相关性。这种线性关系对于数据库中的分类群采样非常稳健,因为在使用自举法的 722 个基因组数据库的子集上也观察到了这种线性关系。然而,当物种丰富度较高且分箱片段长度逐渐饱和时,这种线性关系就会消失。我们建议,对于基于 ARISA 的丰富度估计,在观察到的分箱长度数在 10 到 116 之间时,应使用校正措施,以获得更准确的“物种丰富度”结果,与 16S rRNA 克隆文库数据相媲美。