Suppr超能文献

通过放射自显影术研究高尔基体的物质运输。

Traffic through the Golgi apparatus as studied by radioautography.

作者信息

Bennett G, Wild G

机构信息

Department of Anatomy, McGill University, Montreal, Quebec, Canada.

出版信息

J Electron Microsc Tech. 1991 Feb;17(2):132-49. doi: 10.1002/jemt.1060170203.

Abstract

The ability to radiolabel biological molecules, in conjunction with radioautographic or cell fractionation techniques, has brought about a revolution in our knowledge of dynamic cellular processes. This has been particularly true since the 1940's, when isotopes such as 35S and 14C became available, since these isotopes could be incorporated into a great variety of biologically important compounds. The first dynamic evidence for Golgi apparatus involvement in biosynthesis came from light microscope radioautographic studies by Jennings and Florey in the 1950's, in which label was localized to the supranuclear Golgi region of goblet cells soon after injection of 35S-sulfate. When the low energy isotope tritium became available, and when radioautography could be extended to the electron microscope level, a great improvement in spatial resolution was achieved. Studies using 3H-amino acids revealed that proteins were synthesized in the rough endoplasmic reticulum, migrated to the Golgi apparatus, and thence to secretion granules, lysosomes, or the plasma membrane. The work of Neutra and Leblond in the 1960's using 3H-glucose provided dramatic evidence that the Golgi apparatus was involved in glycosylation. Work with 3H-mannose (a core sugar in N-linked side chains), showed that this sugar was incorporated into glycoproteins in the rough endoplasmic reticulum, providing the first radioautographic evidence that glycosylation of proteins did not occur solely in the Golgi apparatus. Studies with the tritiated precursors of fucose, galactose, and sialic acid, on the other hand, showed that these terminal sugars are mainly added in the Golgi apparatus. With its limited spatial resolution, radioautography cannot discriminate between label in adjacent Golgi saccules. Nonetheless, in some cell types, radioautographic evidence (along with cytochemical and cell fractionation data) has indicated that the Golgi is subcompartmentalized in terms of glycosylation, with galactose and sialic acid being added to glycoproteins only within the trans-Golgi compartment. In the last ten years, radioautographic tracing of radioiodinated plasma membrane molecules has indicated a substantial recycling of such molecules to the Golgi apparatus.

摘要

将生物分子进行放射性标记的能力,结合放射自显影或细胞分级分离技术,给我们对动态细胞过程的认识带来了一场革命。自20世纪40年代以来尤其如此,当时诸如35S和14C等同位素开始可用,因为这些同位素可以被整合到各种各样具有生物学重要性的化合物中。关于高尔基体参与生物合成的第一个动态证据来自20世纪50年代詹宁斯和弗洛里的光学显微镜放射自显影研究,在注射35S-硫酸盐后不久,标记物就定位于杯状细胞的核上高尔基体区域。当低能同位素氚可用,并且放射自显影可以扩展到电子显微镜水平时,空间分辨率有了很大提高。使用3H-氨基酸的研究表明,蛋白质在糙面内质网中合成,迁移到高尔基体,然后到达分泌颗粒、溶酶体或质膜。20世纪60年代纽特拉和勒布朗使用3H-葡萄糖的研究提供了有力证据,证明高尔基体参与糖基化。对3H-甘露糖(N-连接侧链中的核心糖)的研究表明,这种糖在糙面内质网中被整合到糖蛋白中,这提供了第一个放射自显影证据,证明蛋白质的糖基化并非仅发生在高尔基体中。另一方面,对岩藻糖、半乳糖和唾液酸的氚化前体的研究表明,这些末端糖主要在高尔基体中添加。由于其有限的空间分辨率,放射自显影无法区分相邻高尔基体囊泡中的标记物。尽管如此,在某些细胞类型中,放射自显影证据(连同细胞化学和细胞分级分离数据)表明,高尔基体在糖基化方面是亚区室化的,半乳糖和唾液酸仅在反式高尔基体区室中添加到糖蛋白中。在过去十年中,对放射性碘化质膜分子的放射自显影追踪表明,此类分子大量循环回到高尔基体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验