Suppr超能文献

在体主动脉壁应力-应变关系的特征描述。

In vivo characterization of the aortic wall stress-strain relationship.

机构信息

Department of Mechanical Engineering, Chiang Mai University, Chiang Mai, Thailand.

出版信息

Ultrasonics. 2010 Jun;50(7):654-65. doi: 10.1016/j.ultras.2010.01.003. Epub 2010 Jan 14.

Abstract

Arterial stiffness has been shown to be a good indicator of arterial wall disease. However, a single parameter is insufficient to describe the complex stress-strain relationship of a multi-component, non-linear tissue such as the aorta. We therefore propose a new approach to measure the stress-strain relationship locally in vivo noninvasively, and present a clinically relevant parameter describing the mechanical interaction between aortic wall constituents. The slope change of the circumferential stress-strain curve was hypothesized to be related to the contribution of elastin and collagen, and was defined as the transition strain (epsilon(theta)(T)). A two-parallel spring model was employed and three Young's moduli were accordingly evaluated, i.e., corresponding to the: elastic lamellae (E(1)), elastin-collagen fibers (E(2)) and collagen fibers (E(3)). Our study was performed on normal and Angiotensin II (AngII)-treated mouse abdominal aortas using the aortic pressure after catheterization and the local aortic wall diameters change from a cross-correlation technique on the radio frequency (RF) ultrasound signal at 30 MHz and frame rate of 8 kHz. Using our technique, the transition strain and three Young's moduli in both normal and pathological aortas were mapped in 2D. The slope change of the circumferential stress-strain curve was first observed in vivo under physiologic conditions. The transition strain was found at a lower strain level in the AngII-treated case, i.e., 0.029+/-0.006 for the normal and 0.012+/-0.004 for the AngII-treated aortas. E(1), E(2) and E(3) were equal to 69.7+/-18.6, 214.5+/-65.8 and 144.8+/-55.2 kPa for the normal aortas, and 222.1+/-114.8, 775.0+/-586.4 and 552.9+/-519.1 kPa for the AngII-treated aortas, respectively. This is because of the alteration of structures and content of the wall constituents, the degradation of elastic lamella and collagen formation due to AngII treatment. While such values illustrate the alteration of structure and content of the wall constituents related to AngII treatment, limitations regarding physical assumptions (isotropic, linear elastic) should be kept in mind. The transition strain, however, was shown to be a pressure independent parameter that can be clinically relevant and noninvasively measured using ultrasound-based motion estimation techniques. In conclusion, our novel methodology can assess the stress-strain relationship of the aortic wall locally in vivo and quantify important parameters for the detection and characterization of vascular disease.

摘要

动脉僵硬度已被证明是动脉壁疾病的一个良好指标。然而,单一参数不足以描述主动脉等多成分、非线性组织的复杂应力-应变关系。因此,我们提出了一种新的方法来无创地在体内局部测量应力-应变关系,并提出了一个描述主动脉壁成分之间力学相互作用的临床相关参数。我们假设周向应力-应变曲线的斜率变化与弹性蛋白和胶原蛋白的贡献有关,并将其定义为过渡应变(epsilon(theta)(T))。采用双平行弹簧模型,并相应评估了三个杨氏模量,即弹性层片(E(1))、弹性蛋白-胶原纤维(E(2))和胶原纤维(E(3))。我们的研究使用导管后主动脉压力和射频(RF)超声信号的局部主动脉壁直径变化,通过相关技术在 30MHz 和 8kHz 的帧频下,对正常和血管紧张素 II(AngII)处理的小鼠腹主动脉进行。使用我们的技术,在正常和病理主动脉中以 2D 形式绘制了过渡应变和三个杨氏模量。在生理条件下,首次在体内观察到周向应力-应变曲线的斜率变化。在 AngII 处理的情况下,发现过渡应变出现在较低的应变水平,即正常主动脉为 0.029+/-0.006,AngII 处理的主动脉为 0.012+/-0.004。E(1)、E(2)和 E(3)分别等于正常主动脉的 69.7+/-18.6、214.5+/-65.8 和 144.8+/-55.2kPa,AngII 处理的主动脉为 222.1+/-114.8、775.0+/-586.4 和 552.9+/-519.1kPa。这是由于壁成分的结构和含量的改变,弹性层片和胶原蛋白的降解由于 AngII 处理。虽然这些值说明了与 AngII 处理相关的壁成分的结构和含量的改变,但应牢记物理假设(各向同性、线性弹性)的局限性。然而,过渡应变是一个与压力无关的参数,可使用基于超声的运动估计技术进行临床相关和无创测量。总之,我们的新方法可以在体内局部评估主动脉壁的应力-应变关系,并量化用于检测和表征血管疾病的重要参数。

相似文献

1
In vivo characterization of the aortic wall stress-strain relationship.
Ultrasonics. 2010 Jun;50(7):654-65. doi: 10.1016/j.ultras.2010.01.003. Epub 2010 Jan 14.
2
Characterization of the stress-strain relationship of the abdominal aortic wall in vivo.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1960-3. doi: 10.1109/IEMBS.2009.5333466.
3
Arterial stiffness identification of the human carotid artery using the stress-strain relationship in vivo.
Ultrasonics. 2012 Mar;52(3):402-11. doi: 10.1016/j.ultras.2011.09.006. Epub 2011 Sep 28.
4
Pulse wave imaging of normal and aneurysmal abdominal aortas in vivo.
IEEE Trans Med Imaging. 2009 Apr;28(4):477-86. doi: 10.1109/TMI.2008.928179. Epub 2008 Jul 15.
6
Elastic properties of human aortas in relation to age and atherosclerosis: a structural model.
Phys Med Biol. 1995 Oct;40(10):1577-97. doi: 10.1088/0031-9155/40/10/002.
8
Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
Acta Biomater. 2021 Oct 15;134:401-421. doi: 10.1016/j.actbio.2021.07.036. Epub 2021 Jul 23.
9
Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs.
Am J Physiol. 1991 Jun;260(6 Pt 2):H1870-7. doi: 10.1152/ajpheart.1991.260.6.H1870.

引用本文的文献

1
Computation of Vascular Parameters: Implementing Methodology and Performance Analysis.
Biosensors (Basel). 2023 Jul 25;13(8):757. doi: 10.3390/bios13080757.
2
Strain estimation in aortic roots from 4D echocardiographic images using medial modeling and deformable registration.
Med Image Anal. 2023 Jul;87:102804. doi: 10.1016/j.media.2023.102804. Epub 2023 Apr 1.
3
Feasibility of Bilinear Mechanical Characterization of the Abdominal Aorta in a Hypertensive Mouse Model.
Ultrasound Med Biol. 2021 Dec;47(12):3480-3490. doi: 10.1016/j.ultrasmedbio.2021.08.001. Epub 2021 Sep 7.
4
Wall Shear Stress Directional Abnormalities in BAV Aortas: Toward a New Hemodynamic Predictor of Aortopathy?
Front Physiol. 2018 Aug 14;9:993. doi: 10.3389/fphys.2018.00993. eCollection 2018.
5
Angiotensin II Infusion Does Not Cause Abdominal Aortic Aneurysms in Apolipoprotein E-Deficient Rats.
J Vasc Res. 2018;55(1):1-12. doi: 10.1159/000484086. Epub 2017 Nov 23.
6
Asymmetric pulsation of rat carotid artery bifurcation in three-dimension observed by ultrasound imaging.
Int J Cardiovasc Imaging. 2016 Oct;32(10):1499-508. doi: 10.1007/s10554-016-0934-9. Epub 2016 Jul 4.
7
Influence of surrounding tissues on biomechanics of aortic wall.
Int J Exp Comput Biomech. 2013 Sep;2(2):105-117. doi: 10.1504/IJECB.2013.056516.
9
Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension.
PLoS One. 2013 Nov 6;8(11):e78569. doi: 10.1371/journal.pone.0078569. eCollection 2013.
10
Generation of spatially aligned collagen fiber networks through microtransfer molding.
Adv Healthc Mater. 2014 Mar;3(3):367-74. doi: 10.1002/adhm.201300112. Epub 2013 Aug 29.

本文引用的文献

1
Pulse wave imaging of normal and aneurysmal abdominal aortas in vivo.
IEEE Trans Med Imaging. 2009 Apr;28(4):477-86. doi: 10.1109/TMI.2008.928179. Epub 2008 Jul 15.
5
Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based biomechanical model.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2754-63. doi: 10.1152/ajpheart.01108.2006. Epub 2007 Jan 19.
6
Expert consensus document on arterial stiffness: methodological issues and clinical applications.
Eur Heart J. 2006 Nov;27(21):2588-605. doi: 10.1093/eurheartj/ehl254. Epub 2006 Sep 25.
7
Stress-driven collagen fiber remodeling in arterial walls.
Biomech Model Mechanobiol. 2007 Apr;6(3):163-75. doi: 10.1007/s10237-006-0049-7. Epub 2006 Aug 16.
8
Elastic fibres in health and disease.
Expert Rev Mol Med. 2006 Aug 8;8(19):1-23. doi: 10.1017/S146239940600007X.
9
Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.
J R Soc Interface. 2006 Feb 22;3(6):15-35. doi: 10.1098/rsif.2005.0073.
10
Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests.
J Biomech. 2007;40(3):586-94. doi: 10.1016/j.jbiomech.2006.02.004. Epub 2006 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验