Suppr超能文献

相似文献

1
Global regulation of food supply by Pseudomonas putida DOT-T1E.
J Bacteriol. 2010 Apr;192(8):2169-81. doi: 10.1128/JB.01129-09. Epub 2010 Feb 5.
3
Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0.
Appl Environ Microbiol. 2005 Aug;71(8):4191-8. doi: 10.1128/AEM.71.8.4191-4198.2005.
6
Cra regulates the cross-talk between the two branches of the phosphoenolpyruvate : phosphotransferase system of Pseudomonas putida.
Environ Microbiol. 2013 Jan;15(1):121-32. doi: 10.1111/j.1462-2920.2012.02808.x. Epub 2012 Jun 19.
7
Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures.
Appl Environ Microbiol. 2006 Nov;72(11):7418-21. doi: 10.1128/AEM.01067-06. Epub 2006 Sep 22.
8
Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E.
J Bacteriol. 1998 Jul;180(13):3323-9. doi: 10.1128/JB.180.13.3323-3329.1998.
9
The interplay of the EIIA(Ntr) component of the nitrogen-related phosphotransferase system (PTS(Ntr)) of Pseudomonas putida with pyruvate dehydrogenase.
Biochim Biophys Acta. 2011 Oct;1810(10):995-1005. doi: 10.1016/j.bbagen.2011.01.002. Epub 2011 Jan 12.
10
Role of ptsO in carbon-mediated inhibition of the Pu promoter belonging to the pWW0 Pseudomonas putida plasmid.
J Bacteriol. 2001 Sep;183(17):5128-33. doi: 10.1128/JB.183.17.5128-5133.2001.

引用本文的文献

1
Microbial proliferation deteriorates the corrosion inhibition capability, lubricity, and stability of cutting fluid.
Front Microbiol. 2025 Feb 11;16:1522265. doi: 10.3389/fmicb.2025.1522265. eCollection 2025.
2
The global regulation of c-di-GMP and cAMP in bacteria.
mLife. 2024 Mar 11;3(1):42-56. doi: 10.1002/mlf2.12104. eCollection 2024 Mar.
3
Melanin production by sp. and comparative analysis of tyrosinase gene sequences.
BioTechnologia (Pozn). 2021 Dec 22;102(4):411-424. doi: 10.5114/bta.2021.111106. eCollection 2021.
4
Synthesis of aromatic amino acids from 2G lignocellulosic substrates.
Microb Biotechnol. 2021 Sep;14(5):1931-1943. doi: 10.1111/1751-7915.13844. Epub 2021 Aug 17.
7
Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species.
Microb Biotechnol. 2020 Jan;13(1):32-53. doi: 10.1111/1751-7915.13400. Epub 2019 Mar 18.
8
The biotechnological potential of marine bacteria in the novel lineage of Pseudomonas pertucinogena.
Microb Biotechnol. 2020 Jan;13(1):19-31. doi: 10.1111/1751-7915.13288. Epub 2018 Jun 25.
9
Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators.
Microb Biotechnol. 2018 May;11(3):442-454. doi: 10.1111/1751-7915.13263. Epub 2018 Apr 2.
10
Specific Gene Loci of Clinical Pseudomonas putida Isolates.
PLoS One. 2016 Jan 28;11(1):e0147478. doi: 10.1371/journal.pone.0147478. eCollection 2016.

本文引用的文献

2
Bacterial responses and interactions with plants during rhizoremediation.
Microb Biotechnol. 2009 Jul;2(4):452-64. doi: 10.1111/j.1751-7915.2009.00113.x. Epub 2009 Apr 16.
4
Life of microbes that interact with plants.
Microb Biotechnol. 2009 Jul;2(4):412-5. doi: 10.1111/j.1751-7915.2009.00129.x.
5
Identification and characterization of the PhhR regulon in Pseudomonas putida.
Environ Microbiol. 2010 Jun;12(6):1427-38. doi: 10.1111/j.1462-2920.2009.02124.x. Epub 2009 Dec 27.
6
KEGG for representation and analysis of molecular networks involving diseases and drugs.
Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60. doi: 10.1093/nar/gkp896. Epub 2009 Oct 30.
7
D-amino acids govern stationary phase cell wall remodeling in bacteria.
Science. 2009 Sep 18;325(5947):1552-5. doi: 10.1126/science.1178123.
10
Reactome knowledgebase of human biological pathways and processes.
Nucleic Acids Res. 2009 Jan;37(Database issue):D619-22. doi: 10.1093/nar/gkn863. Epub 2008 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验