Suppr超能文献

用于比较成像系统效能的ROC和自由反应范式的临床相关性。

Clinical relevance of the ROC and free-response paradigms for comparing imaging system efficacies.

作者信息

Chakraborty D P

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Radiat Prot Dosimetry. 2010 Apr-May;139(1-3):37-41. doi: 10.1093/rpd/ncq017. Epub 2010 Feb 5.

Abstract

Observer performance studies are widely used to assess medical imaging systems. Unlike technical/engineering measurements observer performance include the entire imaging chain and the radiologist. However, the widely used receiver operating characteristic (ROC) method ignores lesion localisation information. The free-response ROC (FROC) method uses the location information to appropriately reward or penalise correct or incorrect localisations, respectively. This paper describes a method for improving the clinical relevance of FROC studies. The method consists of assigning appropriate risk values to the different lesions that may be present on a single image. A high-risk lesion is one that is critical to detect and act upon, and is assigned a higher risk value than a low-risk lesion, one that is relatively innocuous. Instead of simply counting the number of lesions that are detected, as is done in conventional FROC analysis, a risk-weighted count is used. This has the advantage of rewarding detections of high-risk lesions commensurately more than detections of lower risk lesions. Simulations were used to demonstrate that the new method, termed case-based analysis, results in a higher figure of merit for an expert who detects more high-risk lesions than a naive observer who detects more low-risk lesions, even though both detect the same total number of lesions. Conventional free-response analysis is unable to distinguish between the two types of observers. This paper also comments on the issue of clinical relevance of ROC analysis vs. FROC for tasks that involve lesion localisation.

摘要

观察者性能研究被广泛用于评估医学成像系统。与技术/工程测量不同,观察者性能涵盖了整个成像链以及放射科医生。然而,广泛使用的接收器操作特性(ROC)方法忽略了病变定位信息。自由响应ROC(FROC)方法利用位置信息分别对正确或错误的定位给予适当的奖励或惩罚。本文描述了一种提高FROC研究临床相关性的方法。该方法包括为单个图像上可能出现的不同病变赋予适当的风险值。高风险病变是指检测和处理起来至关重要的病变,其被赋予的风险值高于低风险病变,低风险病变相对无害。与传统FROC分析中简单计算检测到的病变数量不同,这里使用的是风险加权计数。这样做的优点是,相比于低风险病变的检测,对高风险病变的检测给予了相应更多的奖励。通过模拟证明,这种被称为基于病例分析的新方法,对于检测出更多高风险病变的专家而言,其优值高于检测出更多低风险病变的新手观察者,即便两者检测到的病变总数相同。传统的自由响应分析无法区分这两种类型的观察者。本文还对涉及病变定位任务时ROC分析与FROC的临床相关性问题进行了评论。

相似文献

1
Clinical relevance of the ROC and free-response paradigms for comparing imaging system efficacies.
Radiat Prot Dosimetry. 2010 Apr-May;139(1-3):37-41. doi: 10.1093/rpd/ncq017. Epub 2010 Feb 5.
2
Consistency of methods for analysing location-specific data.
Radiat Prot Dosimetry. 2010 Apr-May;139(1-3):52-6. doi: 10.1093/rpd/ncq030. Epub 2010 Feb 16.
3
A status report on free-response analysis.
Radiat Prot Dosimetry. 2010 Apr-May;139(1-3):20-5. doi: 10.1093/rpd/ncp305. Epub 2010 Jan 18.
4
Quantifying the clinical relevance of a laboratory observer performance paradigm.
Br J Radiol. 2012 Sep;85(1017):1287-302. doi: 10.1259/bjr/45866310. Epub 2012 May 9.
6
Ideal AFROC and FROC observers.
IEEE Trans Med Imaging. 2010 Feb;29(2):375-86. doi: 10.1109/TMI.2009.2031840.
8
ROC, LROC, FROC, AFROC: an alphabet soup.
J Am Coll Radiol. 2009 Sep;6(9):652-5. doi: 10.1016/j.jacr.2009.06.001.

引用本文的文献

1
Radiologist Self-training: a Study of Cancer Detection when Reading Mammograms at Work Clinics or Workshops.
J Cancer Educ. 2023 Apr;38(2):571-577. doi: 10.1007/s13187-022-02156-w. Epub 2022 May 5.
3
EXTRACOLONIC FINDINGS-IDENTIFICATION AT LOW-DOSE CTC.
Radiat Prot Dosimetry. 2021 Oct 12;195(3-4):188-197. doi: 10.1093/rpd/ncab054.
4
Mammographic detection of breast cancer in a non-screening country.
Br J Radiol. 2018 Nov;91(1091):20180071. doi: 10.1259/bjr.20180071. Epub 2018 Jul 26.
5
ROC or FROC? It depends on the research question.
Med Phys. 2017 May;44(5):1603-1606. doi: 10.1002/mp.12151. Epub 2017 Mar 17.

本文引用的文献

9
Ambient lighting: effect of illumination on soft-copy viewing of radiographs of the wrist.
AJR Am J Roentgenol. 2007 Feb;188(2):W177-80. doi: 10.2214/AJR.05.2048.
10
ROC curves predicted by a model of visual search.
Phys Med Biol. 2006 Jul 21;51(14):3463-82. doi: 10.1088/0031-9155/51/14/013. Epub 2006 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验