Suppr超能文献

信号在植物中的渗滤和钙信号的形态。

Signal percolation through plants and the shape of the calcium signature.

机构信息

Zentrum für Biochemie und Molekularbiologie, Universität Kiel, Kiel, Germany.

出版信息

Plant Signal Behav. 2010 Apr;5(4):379-85. doi: 10.4161/psb.5.4.10717. Epub 2010 Apr 20.

Abstract

Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration (Ca(2+)). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been credited the specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the 'Ca(2+) signature' in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the 'receptor cells' to the 'effector cells'. Here, a novel aspect is highlighted to explain the variety of [Ca(2+)] kinetics seen by integrating methods of Ca(2+) recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of Ca(2+)-increases percolate through the organism and thereby deliver a broad variety of 'signatures'. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular 'Ca(2+) signatures' recorded by optical techniques which integrate over a big number of cells or even whole plants.

摘要

植物会对几乎任何类型的外部刺激做出细胞质游离钙浓度 (Ca(2+)) 的瞬时变化反应。过去已经报道了通过光学技术记录的大量动力学变化。这种多样性被认为是解释生物体如何评估传入刺激信息并将其转化为正确的生理反应所必需的特异性,这些反应为生存和繁殖提供了优势。生理反应通常发生在刺激部位之外。这需要细胞间的通讯。因此,反应细胞不一定直接受到刺激,而是通过细胞间通讯接收间接刺激。似乎不太可能的是,在主要受刺激的细胞中,“Ca(2+) 特征”通过细胞间通讯从“受体细胞”传递到“效应细胞”,从而在长距离上传导。在这里,强调了一个新的方面来解释通过整合 Ca(2+) 记录方法来观察到的各种 [Ca(2+)]动力学。植物通常可以被视为具有特定形态和细胞间通讯能力的细胞自动机。只需要很少的规则就可以演示如何通过增加 Ca(2+) 波在整个生物体中传播,从而提供广泛的“特征”。细胞间信号转导的建模可能是寻找不同类型信号传输、信号放大、波形成、振荡和刺激-反应耦合的解释的一种可能方法。这里提出的基本示例表明,在解释通过光学技术记录的细胞“Ca(2+) 特征”时,需要小心谨慎,因为这些特征是通过对大量细胞甚至整个植物进行积分得到的。

相似文献

1
Signal percolation through plants and the shape of the calcium signature.信号在植物中的渗滤和钙信号的形态。
Plant Signal Behav. 2010 Apr;5(4):379-85. doi: 10.4161/psb.5.4.10717. Epub 2010 Apr 20.

引用本文的文献

2
Spatial range, temporal span, and promiscuity of CLE-RLK signaling.CLE-RLK信号传导的空间范围、时间跨度和混杂性。
Front Plant Sci. 2022 Aug 26;13:906087. doi: 10.3389/fpls.2022.906087. eCollection 2022.
3
Towards the Physics of Calcium Signalling in Plants.迈向植物钙信号传导的物理学
Plants (Basel). 2013 Sep 27;2(4):541-88. doi: 10.3390/plants2040541.

本文引用的文献

2
Shaping the calcium signature.塑造钙信号
New Phytol. 2009 Jan;181(2):275-294. doi: 10.1111/j.1469-8137.2008.02682.x.
5
A hydraulic signal in root-to-shoot signalling of water shortage.缺水时根到地上部信号传导中的液压信号。
Plant J. 2007 Oct;52(1):167-74. doi: 10.1111/j.1365-313X.2007.03234.x. Epub 2007 Aug 16.
6
Electrical signals and their physiological significance in plants.植物中的电信号及其生理意义。
Plant Cell Environ. 2007 Mar;30(3):249-257. doi: 10.1111/j.1365-3040.2006.01614.x.
7
What is apical and what is basal in plant root development?
Trends Plant Sci. 2005 Sep;10(9):409-11. doi: 10.1016/j.tplants.2005.07.004.
8
Calcium: just another regulator in the machinery of life?钙:生命机制中的又一种调节因子?
Ann Bot. 2005 Jul;96(1):1-8. doi: 10.1093/aob/mci144. Epub 2005 Apr 21.
10
How the Venus flytrap snaps.捕蝇草是如何合拢的。
Nature. 2005 Jan 27;433(7024):421-5. doi: 10.1038/nature03185.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验