Suppr超能文献

信号在植物中的渗滤和钙信号的形态。

Signal percolation through plants and the shape of the calcium signature.

机构信息

Zentrum für Biochemie und Molekularbiologie, Universität Kiel, Kiel, Germany.

出版信息

Plant Signal Behav. 2010 Apr;5(4):379-85. doi: 10.4161/psb.5.4.10717. Epub 2010 Apr 20.

Abstract

Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration (Ca(2+)). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been credited the specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the 'Ca(2+) signature' in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the 'receptor cells' to the 'effector cells'. Here, a novel aspect is highlighted to explain the variety of [Ca(2+)] kinetics seen by integrating methods of Ca(2+) recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of Ca(2+)-increases percolate through the organism and thereby deliver a broad variety of 'signatures'. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular 'Ca(2+) signatures' recorded by optical techniques which integrate over a big number of cells or even whole plants.

摘要

植物会对几乎任何类型的外部刺激做出细胞质游离钙浓度 (Ca(2+)) 的瞬时变化反应。过去已经报道了通过光学技术记录的大量动力学变化。这种多样性被认为是解释生物体如何评估传入刺激信息并将其转化为正确的生理反应所必需的特异性,这些反应为生存和繁殖提供了优势。生理反应通常发生在刺激部位之外。这需要细胞间的通讯。因此,反应细胞不一定直接受到刺激,而是通过细胞间通讯接收间接刺激。似乎不太可能的是,在主要受刺激的细胞中,“Ca(2+) 特征”通过细胞间通讯从“受体细胞”传递到“效应细胞”,从而在长距离上传导。在这里,强调了一个新的方面来解释通过整合 Ca(2+) 记录方法来观察到的各种 [Ca(2+)]动力学。植物通常可以被视为具有特定形态和细胞间通讯能力的细胞自动机。只需要很少的规则就可以演示如何通过增加 Ca(2+) 波在整个生物体中传播,从而提供广泛的“特征”。细胞间信号转导的建模可能是寻找不同类型信号传输、信号放大、波形成、振荡和刺激-反应耦合的解释的一种可能方法。这里提出的基本示例表明,在解释通过光学技术记录的细胞“Ca(2+) 特征”时,需要小心谨慎,因为这些特征是通过对大量细胞甚至整个植物进行积分得到的。

相似文献

1
Signal percolation through plants and the shape of the calcium signature.
Plant Signal Behav. 2010 Apr;5(4):379-85. doi: 10.4161/psb.5.4.10717. Epub 2010 Apr 20.
2
[Intra- and intercellular Ca(2+)-signal transduction].
Verh K Acad Geneeskd Belg. 2000;62(6):501-63.
3
Unravelling response-specificity in Ca signalling pathways in plant cells.
New Phytol. 2001 Jul;151(1):7-33. doi: 10.1046/j.1469-8137.2001.00173.x.
5
A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.
Trends Plant Sci. 2014 Oct;19(10):623-30. doi: 10.1016/j.tplants.2014.06.013. Epub 2014 Jul 23.
6
Calcium spikes, waves and oscillations in plant development and biotic interactions.
Nat Plants. 2020 Jul;6(7):750-759. doi: 10.1038/s41477-020-0667-6. Epub 2020 Jun 29.
7
Intercellular calcium waves integrate hormonal control of glucose output in the intact liver.
J Physiol. 2019 Jun;597(11):2867-2885. doi: 10.1113/JP277650. Epub 2019 Apr 29.
8
Intercellular signal communication among odontoblasts and trigeminal ganglion neurons via glutamate.
Cell Calcium. 2016 Nov;60(5):341-355. doi: 10.1016/j.ceca.2016.07.003. Epub 2016 Jul 15.
9
Review: Microtubules monitor calcium and reactive oxygen species signatures in signal transduction.
Plant Sci. 2021 Mar;304:110589. doi: 10.1016/j.plantsci.2020.110589. Epub 2020 Jul 1.
10
The plant clock shows its metal: circadian regulation of cytosolic free Ca(2+).
Trends Plant Sci. 2005 Jan;10(1):15-21. doi: 10.1016/j.tplants.2004.12.001.

引用本文的文献

1
Caffeine Produced in Rice Plants Provides Tolerance to Water-Deficit Stress.
Antioxidants (Basel). 2023 Nov 8;12(11):1984. doi: 10.3390/antiox12111984.
2
Spatial range, temporal span, and promiscuity of CLE-RLK signaling.
Front Plant Sci. 2022 Aug 26;13:906087. doi: 10.3389/fpls.2022.906087. eCollection 2022.
3
Towards the Physics of Calcium Signalling in Plants.
Plants (Basel). 2013 Sep 27;2(4):541-88. doi: 10.3390/plants2040541.
5
Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.
PLoS One. 2013 Oct 16;8(10):e75646. doi: 10.1371/journal.pone.0075646. eCollection 2013.
6
Aequorin-based luminescence imaging reveals stimulus- and tissue-specific Ca2+ dynamics in Arabidopsis plants.
Mol Plant. 2013 Mar;6(2):444-55. doi: 10.1093/mp/sst013. Epub 2013 Jan 31.
7
Apoplastic calcium executes a shut-down function on plant peroxidases: a hypothesis.
Plant Signal Behav. 2012 Jun;7(6):678-81. doi: 10.4161/psb.20007. Epub 2012 May 14.

本文引用的文献

1
On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis).
Planta. 1989 Aug;179(1):32-42. doi: 10.1007/BF00395768.
2
Shaping the calcium signature.
New Phytol. 2009 Jan;181(2):275-294. doi: 10.1111/j.1469-8137.2008.02682.x.
3
Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf.
Plant Cell Environ. 2009 Apr;32(4):319-26. doi: 10.1111/j.1365-3040.2008.01922.x. Epub 2008 Nov 25.
4
Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants.
Plant Cell Environ. 2009 Feb;32(2):194-207. doi: 10.1111/j.1365-3040.2008.01914.x. Epub 2008 Nov 17.
5
A hydraulic signal in root-to-shoot signalling of water shortage.
Plant J. 2007 Oct;52(1):167-74. doi: 10.1111/j.1365-313X.2007.03234.x. Epub 2007 Aug 16.
6
Electrical signals and their physiological significance in plants.
Plant Cell Environ. 2007 Mar;30(3):249-257. doi: 10.1111/j.1365-3040.2006.01614.x.
7
What is apical and what is basal in plant root development?
Trends Plant Sci. 2005 Sep;10(9):409-11. doi: 10.1016/j.tplants.2005.07.004.
8
Calcium: just another regulator in the machinery of life?
Ann Bot. 2005 Jul;96(1):1-8. doi: 10.1093/aob/mci144. Epub 2005 Apr 21.
9
Plant synapses: actin-based domains for cell-to-cell communication.
Trends Plant Sci. 2005 Mar;10(3):106-11. doi: 10.1016/j.tplants.2005.01.002.
10
How the Venus flytrap snaps.
Nature. 2005 Jan 27;433(7024):421-5. doi: 10.1038/nature03185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验