Suppr超能文献

转座子防御在果蝇体细胞中的作用:基因组中自我和非我的区分模型。

Transposon defense in Drosophila somatic cells: a model for distinction of self and non-self in the genome.

机构信息

Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.

出版信息

RNA Biol. 2010 Mar-Apr;7(2):158-61. doi: 10.4161/rna.7.2.11059. Epub 2010 Mar 28.

Abstract

Genomes need an immune system much like entire organisms, because their integrity is threatened by selfish genetic elements which transpose and proliferate at the cost of the host. Unlike bacteria or viruses, these DNA parasites do not have any particular feature that helps to detect them as foreign sequences within the genome-they have no "antigen" so to speak. Nonetheless, sequence-specific defense mechanisms have evolved: The germ-line piRNAs rely on previous exposure that has left degenerate copies of many transposon-families in certain genomic loci from which small RNA sentinels are produced. In addition, the somatic cells of Drosophila deploy transposon-complementary endo-siRNAs to repress their activity. It was unclear how their precursors are generated or which mechanism leads to preferential targeting of transposons. Several publications now report progress in our understanding of endo-siRNA biogenesis and propose the first models for how "self"-DNA might be distinguished from selfish DNA.

摘要

基因组需要一个免疫系统,就像整个生物体一样,因为它们的完整性受到自私遗传元件的威胁,这些元件会以牺牲宿主为代价进行转座和增殖。与细菌或病毒不同,这些 DNA 寄生虫没有任何特别的特征可以帮助将它们识别为基因组内的外来序列——它们没有所谓的“抗原”。尽管如此,还是进化出了序列特异性防御机制:生殖系 piRNA 依赖于先前的暴露,这种暴露在某些基因组位置留下了许多转座子家族的退化副本,从中产生小 RNA 哨兵。此外,果蝇的体细胞还会利用转座子互补的内源性 siRNA 来抑制其活性。目前还不清楚它们的前体是如何产生的,或者是哪种机制导致了转座子的优先靶向。现在有几项出版物报告了我们对内源性 siRNA 生物发生的理解的进展,并提出了第一个关于如何区分“自我”DNA 和自私 DNA 的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验