Department of Chemistry, Stanford University, Stanford, California 94305, USA.
Tissue Eng Part B Rev. 2010 Jun;16(3):285-93. doi: 10.1089/ten.teb.2009.0591.
A common goal in tissue engineering is to attain the ability to tailor specific cell-scaffold interactions and thereby gain control over cell behavior. The tunable nature of protein-engineered biomaterials enables independent tailoring of a range of biomaterial properties, creating an attractive alternative to synthetic polymeric scaffolds or harvested natural scaffolds. Protein-engineered biomaterials are comprised of modular peptide domains with various functionalities that are encoded into a DNA plasmid, transfected into an organism of choice, and expressed and purified to yield a biopolymer with exact molecular-level sequence specification. Because of the modular design strategy of protein-engineered biomaterials, these scaffolds can be easily modified to enable optimization for specific tissue engineering applications. By including multiple peptide domains with different functionalities in a single, modular biomaterial, the scaffolds can be designed to mimic the diverse properties of the natural extracellular matrix, including cell adhesion, cell signaling, elasticity, and biodegradability. Recently, the field of protein-engineered biomaterials has expanded to include functional modules that are not normally present in the extracellular matrix, thus expanding the scope and functionality of these materials. For example, these modules can include noncanonical amino acids, inorganic-binding domains, and DNA-binding sequences. The modularity, tunability, and sequence specificity of protein-engineered biomaterials make them attractive candidates for use as substrates for a variety of tissue engineering applications.
组织工程的一个共同目标是获得定制特定细胞-支架相互作用的能力,从而能够控制细胞行为。经过蛋白质工程设计的生物材料具有可调节的特性,能够独立定制一系列生物材料特性,为合成聚合物支架或天然收获支架提供了有吸引力的替代方案。经过蛋白质工程设计的生物材料由具有各种功能的模块化肽结构域组成,这些结构域被编码到 DNA 质粒中,转染到所选的生物体中,并进行表达和纯化,从而产生具有确切分子水平序列特异性的生物聚合物。由于蛋白质工程设计的生物材料采用模块化设计策略,因此这些支架可以轻松进行修改,以实现针对特定组织工程应用的优化。通过在单个模块化生物材料中包含具有不同功能的多个肽结构域,可以设计支架来模拟天然细胞外基质的各种特性,包括细胞黏附、细胞信号传递、弹性和可生物降解性。最近,蛋白质工程设计的生物材料领域已经扩展到包括正常情况下不在细胞外基质中存在的功能模块,从而扩展了这些材料的范围和功能。例如,这些模块可以包括非天然氨基酸、无机结合结构域和 DNA 结合序列。蛋白质工程设计的生物材料的模块化、可调谐性和序列特异性使它们成为各种组织工程应用的理想底物候选材料。