Suppr超能文献

蛋白质工程生物材料:细胞外基质的纳米级模拟物

Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix.

作者信息

Romano Nicole H, Sengupta Debanti, Chung Cindy, Heilshorn Sarah C

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-4045, USA.

出版信息

Biochim Biophys Acta. 2011 Mar;1810(3):339-49. doi: 10.1016/j.bbagen.2010.07.005. Epub 2010 Jul 18.

Abstract

BACKGROUND

Traditional materials used as in vitro cell culture substrates are rigid and flat surfaces that lack the exquisite nano- and micro-scale features of the in vivo extracellular environment. While these surfaces can be coated with harvested extracellular matrix (ECM) proteins to partially recapitulate the bio-instructive nature of the ECM, these harvested proteins often exhibit large batch-to-batch variability and can be difficult to customize for specific biological studies. In contrast, recombinant protein technology can be utilized to synthesize families of 3 dimensional protein-engineered biomaterials that are cyto-compatible, reproducible, and fully customizable.

SCOPE OF REVIEW

Here we describe a modular design strategy to synthesize protein-engineered biomaterials that fuse together multiple repeats of nanoscale peptide design motifs into full-length engineered ECM mimics.

MAJOR CONCLUSIONS

Due to the molecular-level precision of recombinant protein synthesis, these biomaterials can be tailored to include a variety of bio-instructional ligands at specified densities, to exhibit mechanical properties that match those of native tissue, and to include proteolytic target sites that enable cell-triggered scaffold remodeling. Furthermore, these biomaterials can be processed into forms that are injectable for minimally-invasive delivery or spatially patterned to enable the release of multiple drugs with distinct release kinetics.

GENERAL SIGNIFICANCE

Given the reproducibility and flexibility of these protein-engineered biomaterials, they are ideal substrates for reductionist biological studies of cell-matrix interactions, for in vitro models of physiological processes, and for bio-instructive scaffolds in regenerative medicine therapies. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.

摘要

背景

用作体外细胞培养底物的传统材料是刚性且平坦的表面,缺乏体内细胞外环境所具有的精细纳米和微米级特征。虽然这些表面可以涂覆收获的细胞外基质(ECM)蛋白以部分重现ECM的生物指导性质,但这些收获的蛋白往往表现出较大的批次间差异,并且难以针对特定生物学研究进行定制。相比之下,可以利用重组蛋白技术合成一系列三维蛋白工程生物材料,这些材料具有细胞相容性、可重复性且完全可定制。

综述范围

在这里,我们描述了一种模块化设计策略,用于合成蛋白工程生物材料,该材料将多个纳米级肽设计基序的重复序列融合成全长工程化ECM模拟物。

主要结论

由于重组蛋白合成的分子水平精度,这些生物材料可以进行定制,以特定密度包含多种生物指导配体,展现出与天然组织相匹配的机械性能,并包含蛋白水解靶点,从而实现细胞触发的支架重塑。此外,这些生物材料可以加工成可注射形式用于微创递送,或进行空间图案化以实现具有不同释放动力学的多种药物的释放。

普遍意义

鉴于这些蛋白工程生物材料的可重复性和灵活性,它们是用于细胞-基质相互作用的简化生物学研究、生理过程的体外模型以及再生医学治疗中的生物指导支架的理想底物。本文是名为“纳米技术——在生物医学中的新兴应用”的特刊的一部分。

相似文献

1
Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix.
Biochim Biophys Acta. 2011 Mar;1810(3):339-49. doi: 10.1016/j.bbagen.2010.07.005. Epub 2010 Jul 18.
2
Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering.
Biochim Biophys Acta. 2011 Mar;1810(3):350-60. doi: 10.1016/j.bbagen.2010.04.006. Epub 2010 May 8.
3
Protein-engineered biomaterials: highly tunable tissue engineering scaffolds.
Tissue Eng Part B Rev. 2010 Jun;16(3):285-93. doi: 10.1089/ten.teb.2009.0591.
4
Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype.
Acta Biomater. 2016 Jan;30:26-48. doi: 10.1016/j.actbio.2015.11.027. Epub 2015 Nov 17.
5
Current approaches for modulation of the nanoscale interface in the regulation of cell behavior.
Nanomedicine. 2018 Oct;14(7):2455-2464. doi: 10.1016/j.nano.2017.03.020. Epub 2017 May 26.
6
Designing ECM-mimetic materials using protein engineering.
Acta Biomater. 2014 Apr;10(4):1751-60. doi: 10.1016/j.actbio.2013.12.028. Epub 2013 Dec 21.
7
Bio Mimicking of Extracellular Matrix.
Adv Exp Med Biol. 2019;1174:371-399. doi: 10.1007/978-981-13-9791-2_12.
8
Mimicking Extracellular Matrix via Engineered Nanostructured Biomaterials for Neural Repair.
Curr Neuropharmacol. 2021;19(12):2110-2124. doi: 10.2174/1570159X18666201111111102.
9
Engineering hydrogels as extracellular matrix mimics.
Nanomedicine (Lond). 2010 Apr;5(3):469-84. doi: 10.2217/nnm.10.12.
10
The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine.
Biomaterials. 2011 Jun;32(18):4211-4. doi: 10.1016/j.biomaterials.2011.02.027.

引用本文的文献

1
Application of collagen in bone regeneration.
J Orthop Translat. 2025 Jan 9;50:129-143. doi: 10.1016/j.jot.2024.10.002. eCollection 2025 Jan.
2
Reversible light-responsive protein hydrogel for on-demand cell encapsulation and release.
Acta Biomater. 2025 Jan 24;193:202-214. doi: 10.1016/j.actbio.2025.01.012. Epub 2025 Jan 10.
3
Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions.
Biomacromolecules. 2024 Aug 12;25(8):4639-4662. doi: 10.1021/acs.biomac.4c00188. Epub 2024 Jul 29.
4
Evolutionary approaches in protein engineering towards biomaterial construction.
RSC Adv. 2019 Oct 29;9(60):34720-34734. doi: 10.1039/c9ra06807d. eCollection 2019 Oct 28.
5
Thermo-Viscoelastic Response of Protein-Based Hydrogels.
Bioengineering (Basel). 2021 May 31;8(6):73. doi: 10.3390/bioengineering8060073.
6
Towards the directed evolution of protein materials.
MRS Commun. 2019 Jun;9(2):441-455. doi: 10.1557/mrc.2019.28. Epub 2019 Apr 8.
9
Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry.
Macromolecules. 2017 Jan 24;50(2):483-502. doi: 10.1021/acs.macromol.6b02389. Epub 2017 Jan 6.
10
Integrating Concepts of Material Mechanics, Ligand Chemistry, Dimensionality and Degradation to Control Differentiation of Mesenchymal Stem Cells.
Curr Opin Solid State Mater Sci. 2016 Aug;20(4):171-179. doi: 10.1016/j.cossms.2016.04.001. Epub 2016 May 6.

本文引用的文献

1
Nubac disc arthroplasty: preclinical studies and preliminary safety and efficacy evaluations.
SAS J. 2007 Feb 1;1(1):36-45. doi: 10.1016/SASJ-2006-0007-RR. eCollection 2007.
2
A thermally targeted peptide inhibitor of symmetrical dimethylation inhibits cancer-cell proliferation.
Peptides. 2010 May;31(5):834-41. doi: 10.1016/j.peptides.2010.02.007. Epub 2010 Feb 16.
3
Protein-engineered biomaterials: highly tunable tissue engineering scaffolds.
Tissue Eng Part B Rev. 2010 Jun;16(3):285-93. doi: 10.1089/ten.teb.2009.0591.
5
Two-component protein-engineered physical hydrogels for cell encapsulation.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22067-72. doi: 10.1073/pnas.0904851106. Epub 2009 Dec 10.
6
Designing materials to direct stem-cell fate.
Nature. 2009 Nov 26;462(7272):433-41. doi: 10.1038/nature08602.
7
Matrix crosslinking forces tumor progression by enhancing integrin signaling.
Cell. 2009 Nov 25;139(5):891-906. doi: 10.1016/j.cell.2009.10.027.
8
A chimeric fusion protein engineered with disparate functionalities-enzymatic activity and self-assembly.
J Mol Biol. 2009 Sep 11;392(1):129-42. doi: 10.1016/j.jmb.2009.06.075. Epub 2009 Jul 3.
9
Design and adsorption of modular engineered proteins to prepare customized, neuron-compatible coatings.
Front Neuroeng. 2009 Jun 18;2:9. doi: 10.3389/neuro.16.009.2009. eCollection 2009.
10
Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior.
J Biomed Mater Res A. 2009 Jul;90(1):303-16. doi: 10.1002/jbm.a.32492.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验