Suppr超能文献

家族性高胆固醇血症和混合性高脂血症对小鼠血管壁和网络重构的差异影响。

Differential impact of familial hypercholesterolemia and combined hyperlipidemia on vascular wall and network remodeling in mice.

机构信息

Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, USA.

出版信息

Microcirculation. 2010 Jan;17(1):47-58. doi: 10.1111/j.1549-8719.2009.00003.x.

Abstract

Genetic familial hypercholesterolemia (FH) and combined hyperlipidemia (FCH) are characterized by elevated plasma low-density lipoprotein (LDL) (FH) and LDL/triglycerides (FCH), with mouse models represented by LDL receptor (LDLR) and apolipoprotein E (ApoE) gene deletion mice, respectively. Given the impact of FH and FCH on health outcomes, we determined the impact of FH/FCH on vascular structure in LDLR and ApoE mice. LDLR, ApoE and control mice were utilized at 12-13 and 22-23 weeks when gracilis arteries were studied for wall mechanics and gastrocnemius muscles were harvested for microvessel density measurements. Conduit arteries and plasma samples were harvested for biochemical analyses. Arteries from ApoE and LDLR exhibited blunted expansion versus control, reduced distensibility and left-shifted stress versus strain relation (LDLR > ApoE). Microvessel density was reduced in ApoE and LDLR (ApoE > LDLR). Secondary analyses suggested that wall remodeling in LDLR was associated with cholesterol and MCP-1, while rarefaction in ApoE was associated with tumor necrosis factors-alpha, triglycerides and vascular production of TxA(2). Remodeling in ApoE and LDLR appears distinct; as that in LDLR is preferential for vascular walls, while that for ApoE is stronger for rarefaction. Remodeling in LDLR may be associated with cellular adhesion, while that in ApoE may be associated with pro-apoptotsis and constrictor prostanoid generation.

摘要

遗传性家族性高胆固醇血症(FH)和混合性高脂血症(FCH)的特征是血浆低密度脂蛋白(LDL)升高(FH)和 LDL/甘油三酯(FCH),分别由 LDL 受体(LDLR)和载脂蛋白 E(ApoE)基因缺失小鼠代表。鉴于 FH 和 FCH 对健康结果的影响,我们确定了 FH/FCH 对 LDLR 和 ApoE 小鼠血管结构的影响。在 12-13 周和 22-23 周时,使用 LDLR、ApoE 和对照小鼠研究了骼肌动脉的壁力学,并采集了比目鱼肌以测量微血管密度。采集了输送动脉和血浆样本进行生化分析。与对照相比,ApoE 和 LDLR 中的动脉扩张性减弱,顺应性降低,应力与应变关系左移(LDLR > ApoE)。ApoE 和 LDLR 中的微血管密度降低(ApoE > LDLR)。二次分析表明,LDLR 中的壁重构与胆固醇和单核细胞趋化蛋白-1 有关,而 ApoE 中的稀疏与肿瘤坏死因子-α、甘油三酯和血管生成血栓素 A2 有关。LDLR 和 ApoE 中的重构似乎不同;LDLR 中的重构更倾向于血管壁,而 ApoE 中的重构更倾向于稀疏。LDLR 中的重构可能与细胞黏附有关,而 ApoE 中的重构可能与促凋亡和收缩性前列腺素生成有关。

相似文献

4
Altered mechanisms of endothelium-dependent dilation in skeletal muscle arterioles with genetic hypercholesterolemia.
Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1110-9. doi: 10.1152/ajpregu.00410.2007. Epub 2007 Jul 11.
5
6
Agonist-specific impairment of coronary vascular function in genetically altered, hyperlipidemic mice.
Am J Physiol. 1999 Apr;276(4):R1023-9. doi: 10.1152/ajpregu.1999.276.4.R1023.
9
LR11/SorLA links triglyceride-rich lipoproteins to risk of developing cardiovascular disease in FH patients.
Atherosclerosis. 2015 Dec;243(2):429-37. doi: 10.1016/j.atherosclerosis.2015.10.009. Epub 2015 Oct 13.
10
Effect of macrophage-derived apolipoprotein E on hyperlipidemia and atherosclerosis of LDLR-deficient mice.
Biochem Biophys Res Commun. 2004 Apr 23;317(1):223-9. doi: 10.1016/j.bbrc.2004.03.037.

引用本文的文献

1
Coronary microvascular obstruction and dysfunction in patients with acute myocardial infarction.
Nat Rev Cardiol. 2024 May;21(5):283-298. doi: 10.1038/s41569-023-00953-4. Epub 2023 Nov 24.
3
Role of adropin in arterial stiffening associated with obesity and type 2 diabetes.
Am J Physiol Heart Circ Physiol. 2022 Nov 1;323(5):H879-H891. doi: 10.1152/ajpheart.00385.2022. Epub 2022 Sep 9.
4
A Comorbid Rat Model of Neuroendocrine-Immune System Alterations Under the Impact of Risk Factors for Stroke.
Front Aging Neurosci. 2022 Jan 20;13:827503. doi: 10.3389/fnagi.2021.827503. eCollection 2021.
5
Mouse models of atherosclerosis and their suitability for the study of myocardial infarction.
Basic Res Cardiol. 2020 Nov 30;115(6):73. doi: 10.1007/s00395-020-00829-5.
8
Severe familial hypercholesterolemia impairs the regulation of coronary blood flow and oxygen supply during exercise.
Basic Res Cardiol. 2016 Nov;111(6):61. doi: 10.1007/s00395-016-0579-9. Epub 2016 Sep 13.
10
Heart of the matter: coronary dysfunction in metabolic syndrome.
J Mol Cell Cardiol. 2012 Apr;52(4):848-56. doi: 10.1016/j.yjmcc.2011.06.025. Epub 2011 Jul 13.

本文引用的文献

1
Increased arterial stiffness in familial combined hyperlipidemia.
J Hypertens. 2009 May;27(5):1009-16. doi: 10.1097/hjh.0b013e32832991fa.
4
Management of lower extremity peripheral arterial disease.
J Cardiopulm Rehabil Prev. 2008 Nov-Dec;28(6):349-57. doi: 10.1097/HCR.0b013e31818c3b96.
5
Hypercholesterolemia enhances 15-lipoxygenase-mediated vasorelaxation and acetylcholine-induced hypotension.
Arterioscler Thromb Vasc Biol. 2008 Dec;28(12):2209-15. doi: 10.1161/ATVBAHA.108.177113. Epub 2008 Oct 2.
8
Systemic deficiency of the MAP kinase-activated protein kinase 2 reduces atherosclerosis in hypercholesterolemic mice.
Circ Res. 2007 Nov 26;101(11):1104-12. doi: 10.1161/CIRCRESAHA.107.156075. Epub 2007 Sep 20.
9
Altered mechanisms of endothelium-dependent dilation in skeletal muscle arterioles with genetic hypercholesterolemia.
Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1110-9. doi: 10.1152/ajpregu.00410.2007. Epub 2007 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验