Suppr超能文献

共聚焦反射显微镜中的盲点:在成像生物聚合物网络中,纤维亮度对纤维方向的依赖性。

A blind spot in confocal reflection microscopy: the dependence of fiber brightness on fiber orientation in imaging biopolymer networks.

机构信息

Department of Physics, Harvard University, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2010 Feb 3;98(3):L1-3. doi: 10.1016/j.bpj.2009.09.065.

Abstract

We investigate the dependence of fiber brightness on three-dimensional fiber orientation when imaging biopolymer networks with confocal reflection microscopy (CRM) and confocal fluorescence microscopy (CFM). We compare image data of fluorescently labeled type I collagen networks concurrently acquired using each imaging modality. For CRM, fiber brightness decreases for more vertically oriented fibers, leaving fibers above approximately 50 degrees from the imaging plane entirely undetected. As a result, the three-dimensional network structure appears aligned with the imaging plane. In contrast, CFM data exhibit little variation of fiber brightness with fiber angle, thus revealing an isotropic collagen network. Consequently, we find that CFM detects almost twice as many fibers as are visible with CRM, thereby yielding more complete structural information for three-dimensional fiber networks. We offer a simple explanation that predicts the detected fiber brightness as a function of fiber orientation in CRM.

摘要

我们研究了在使用共聚焦反射显微镜 (CRM) 和共聚焦荧光显微镜 (CFM) 对生物聚合物网络进行成像时,纤维亮度对三维纤维方向的依赖性。我们比较了使用每种成像模式同时获取的荧光标记的 I 型胶原网络的图像数据。对于 CRM,纤维亮度随着更垂直取向的纤维而降低,使得与成像平面大约成 50 度以上的纤维完全无法检测到。因此,三维网络结构似乎与成像平面对齐。相比之下,CFM 数据中纤维亮度随纤维角度的变化很小,从而揭示了各向同性的胶原网络。因此,我们发现 CFM 检测到的纤维数量几乎是 CRM 可见纤维数量的两倍,从而为三维纤维网络提供了更完整的结构信息。我们提供了一个简单的解释,该解释可以根据 CRM 中的纤维方向预测检测到的纤维亮度。

相似文献

2
Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy.
Biophys J. 2009 Oct 7;97(7):2051-60. doi: 10.1016/j.bpj.2009.07.035.
3
Estimating the 3D pore size distribution of biopolymer networks from directionally biased data.
Biophys J. 2013 Nov 5;105(9):1967-75. doi: 10.1016/j.bpj.2013.09.038.
4
Parameter-free binarization and skeletonization of fiber networks from confocal image stacks.
PLoS One. 2012;7(5):e36575. doi: 10.1371/journal.pone.0036575. Epub 2012 May 14.
5
Micromechanics of cellularized biopolymer networks.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5117-22. doi: 10.1073/pnas.1509663112. Epub 2015 Aug 31.
6
Robust pore size analysis of filamentous networks from three-dimensional confocal microscopy.
Biophys J. 2008 Dec 15;95(12):6072-80. doi: 10.1529/biophysj.108.135939. Epub 2008 Oct 3.
7
Collagen I self-assembly: revealing the developing structures that generate turbidity.
Biophys J. 2014 Apr 15;106(8):1822-31. doi: 10.1016/j.bpj.2014.03.011.
9
Fiber finding algorithm using stepwise tracing to identify biopolymer fibers in noisy 3D images.
Biophys J. 2021 Sep 21;120(18):3860-3868. doi: 10.1016/j.bpj.2021.08.017. Epub 2021 Aug 17.
10
Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI.
Neuroimage. 2016 Apr 1;129:185-197. doi: 10.1016/j.neuroimage.2016.01.022. Epub 2016 Jan 21.

引用本文的文献

1
Label-Free Prediction of Fluorescently Labeled Fibrin Networks.
Biomater Res. 2025 May 28;29:0211. doi: 10.34133/bmr.0211. eCollection 2025.
2
Bioprinting Cell-Laden Hydrogels for Studies of Epithelial Tissue Morphogenesis.
Methods Mol Biol. 2024;2805:113-124. doi: 10.1007/978-1-0716-3854-5_7.
3
Magnetic Alignment of Collagen: Principles, Methods, Applications, and Fiber Alignment Analyses.
Tissue Eng Part B Rev. 2024 Aug;30(4):405-422. doi: 10.1089/ten.TEB.2023.0222. Epub 2024 Jan 16.
5
Confocal reflectance microscopy for mapping collagen fiber organization in the vitreous gel of the eye.
Biomed Opt Express. 2023 Jan 30;14(2):932-944. doi: 10.1364/BOE.480343. eCollection 2023 Feb 1.
7
Light-Sheet Scattering Microscopy to Visualize Long-Term Interactions Between Cells and Extracellular Matrix.
Front Immunol. 2022 Jan 28;13:828634. doi: 10.3389/fimmu.2022.828634. eCollection 2022.
8
Marangoni flows drive the alignment of fibrillar cell-laden hydrogels.
Sci Adv. 2020 Jun 12;6(24):eaaz7748. doi: 10.1126/sciadv.aaz7748. eCollection 2020 Jun.
9
A collagen-based microwell migration assay to study NK-target cell interactions.
Sci Rep. 2019 Jul 23;9(1):10672. doi: 10.1038/s41598-019-46958-3.
10
Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices.
PLoS Comput Biol. 2019 Apr 8;15(4):e1006684. doi: 10.1371/journal.pcbi.1006684. eCollection 2019 Apr.

本文引用的文献

1
Robust pore size analysis of filamentous networks from three-dimensional confocal microscopy.
Biophys J. 2008 Dec 15;95(12):6072-80. doi: 10.1529/biophysj.108.135939. Epub 2008 Oct 3.
2
Physical and chemical modifications of collagen gels: impact on diffusion.
Biopolymers. 2008 Feb;89(2):135-43. doi: 10.1002/bip.20874.
4
Mechanobiology in the third dimension.
Ann Biomed Eng. 2005 Nov;33(11):1469-90. doi: 10.1007/s10439-005-8159-4.
5
Analysis of orientations of collagen fibers by novel fiber-tracking software.
Microsc Microanal. 2003 Dec;9(6):574-80. doi: 10.1017/S1431927603030277.
6
Tumour-cell invasion and migration: diversity and escape mechanisms.
Nat Rev Cancer. 2003 May;3(5):362-74. doi: 10.1038/nrc1075.
7
Diffusion and convection in collagen gels: implications for transport in the tumor interstitium.
Biophys J. 2002 Sep;83(3):1650-60. doi: 10.1016/S0006-3495(02)73933-7.
9
Three-dimensional imaging of extracellular matrix and extracellular matrix-cell interactions.
Methods Cell Biol. 2001;63:583-97. doi: 10.1016/s0091-679x(01)63031-0.
10
Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro.
Biopolymers. 2000 Sep;54(3):222-34. doi: 10.1002/1097-0282(200009)54:3<222::AID-BIP80>3.0.CO;2-K.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验