Hwang Eileen S, Morgan Denise J, Sun Jieliyue, Hartnett M Elizabeth, Toussaint Kimani C, Coats Brittany
Department of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
PROBE lab, School of Engineering, Brown University, Providence, RI 02912, USA.
Biomed Opt Express. 2023 Jan 30;14(2):932-944. doi: 10.1364/BOE.480343. eCollection 2023 Feb 1.
Vitreous collagen structure plays an important role in ocular mechanics. However, capturing this structure with existing vitreous imaging methods is hindered by the loss of sample position and orientation, low resolution, or a small field of view. The objective of this study was to evaluate confocal reflectance microscopy as a solution to these limitations. Intrinsic reflectance avoids staining, and optical sectioning eliminates the requirement for thin sectioning, minimizing processing for optimal preservation of the natural structure. We developed a sample preparation and imaging strategy using grossly sectioned porcine eyes. Imaging revealed a network of uniform diameter crossing fibers (1.1 ± 0.3 µm for a typical image) with generally poor alignment (alignment coefficient = 0.40 ± 0.21 for a typical image). To test the utility of our approach for detecting differences in fiber spatial distribution, we imaged eyes every 1 mm along an anterior-posterior axis originating at the limbus and quantified the number of fibers in each image. Fiber density was higher anteriorly near the vitreous base, regardless of the imaging plane. These data demonstrate that confocal reflectance microscopy addresses the previously unmet need for a robust, micron-scale technique to map features of collagen networks across the vitreous.
玻璃体胶原结构在眼部力学中起着重要作用。然而,现有的玻璃体成像方法在捕捉这种结构时,会受到样本位置和方向丢失、分辨率低或视野小的阻碍。本研究的目的是评估共聚焦反射显微镜作为解决这些局限性的方法。固有反射避免了染色,光学切片消除了薄切片的要求,将处理过程降至最低以最佳保存自然结构。我们使用大体切片的猪眼开发了一种样本制备和成像策略。成像显示出一个由直径均匀的交叉纤维组成的网络(典型图像中为1.1±0.3µm),其排列通常较差(典型图像的排列系数为0.40±0.21)。为了测试我们的方法在检测纤维空间分布差异方面的实用性,我们沿着起源于角膜缘的前后轴每隔1mm对眼睛进行成像,并对每个图像中的纤维数量进行量化。无论成像平面如何,纤维密度在玻璃体基部附近的前部较高。这些数据表明,共聚焦反射显微镜满足了此前对一种强大的微米级技术的未满足需求,该技术可绘制整个玻璃体中胶原网络的特征。