Suppr超能文献

胶原蛋白凝胶中的扩散与对流:对肿瘤间质中物质传输的影响

Diffusion and convection in collagen gels: implications for transport in the tumor interstitium.

作者信息

Ramanujan Saroja, Pluen Alain, McKee Trevor D, Brown Edward B, Boucher Yves, Jain Rakesh K

机构信息

E. L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.

出版信息

Biophys J. 2002 Sep;83(3):1650-60. doi: 10.1016/S0006-3495(02)73933-7.

Abstract

Diffusion coefficients of tracer molecules in collagen type I gels prepared from 0-4.5% w/v solutions were measured by fluorescence recovery after photobleaching. When adjusted to account for in vivo tortuosity, diffusion coefficients in gels matched previous measurements in four human tumor xenografts with equivalent collagen concentrations. In contrast, hyaluronan solutions hindered diffusion to a lesser extent when prepared at concentrations equivalent to those reported in these tumors. Collagen permeability, determined from flow through gels under hydrostatic pressure, was compared with predictions obtained from application of the Brinkman effective medium model to diffusion data. Permeability predictions matched experimental results at low concentrations, but underestimated measured values at high concentrations. Permeability measurements in gels did not match previous measurements in tumors. Visualization of gels by transmission electron microscopy and light microscopy revealed networks of long collagen fibers at lower concentrations along with shorter fibers at high concentrations. Negligible assembly was detected in collagen solutions pregelation. However, diffusion was similarly hindered in pre and postgelation samples. Comparison of diffusion and convection data in these gels and tumors suggests that collagen may obstruct diffusion more than convection in tumors. These findings have significant implications for drug delivery in tumors and for tissue engineering applications.

摘要

通过光漂白后的荧光恢复来测量示踪分子在由0 - 4.5% w/v溶液制备的I型胶原凝胶中的扩散系数。当调整以考虑体内曲折度时,凝胶中的扩散系数与先前在四种具有等效胶原浓度的人肿瘤异种移植中的测量值相匹配。相比之下,当以与这些肿瘤中报道的浓度相当的浓度制备时,透明质酸溶液对扩散的阻碍程度较小。通过在静水压力下通过凝胶的流量确定的胶原渗透性,与将布林克曼有效介质模型应用于扩散数据所获得的预测值进行了比较。渗透性预测在低浓度下与实验结果匹配,但在高浓度下低估了测量值。凝胶中的渗透性测量与先前在肿瘤中的测量值不匹配。通过透射电子显微镜和光学显微镜对凝胶进行可视化显示,在较低浓度下有长胶原纤维网络,在高浓度下有较短的纤维。在胶原溶液预凝胶化过程中检测到可忽略不计的组装。然而,在预凝胶化和后凝胶化样品中扩散同样受到阻碍。这些凝胶和肿瘤中扩散与对流数据的比较表明,在肿瘤中胶原对扩散的阻碍可能比对流更大。这些发现对肿瘤中的药物递送和组织工程应用具有重要意义。

相似文献

1
Diffusion and convection in collagen gels: implications for transport in the tumor interstitium.
Biophys J. 2002 Sep;83(3):1650-60. doi: 10.1016/S0006-3495(02)73933-7.
2
Physical and chemical modifications of collagen gels: impact on diffusion.
Biopolymers. 2008 Feb;89(2):135-43. doi: 10.1002/bip.20874.
3
Measurement of macromolecular diffusion coefficients in human tumors.
Microvasc Res. 2004 May;67(3):231-6. doi: 10.1016/j.mvr.2004.02.001.
4
Effect of PEGylation on the diffusion and stability of chitosan-DNA polyplexes in collagen gels.
Biomacromolecules. 2011 Oct 10;12(10):3656-65. doi: 10.1021/bm200901s. Epub 2011 Sep 1.
5
Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope.
Biophys J. 2006 Dec 1;91(11):4241-52. doi: 10.1529/biophysj.106.084251. Epub 2006 Sep 1.
6
Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation.
Biophys J. 2010 Nov 17;99(10):3119-28. doi: 10.1016/j.bpj.2010.08.065.
8
Hindered convection of macromolecules in hydrogels.
Biophys J. 2005 Jan;88(1):277-86. doi: 10.1529/biophysj.104.050302. Epub 2004 Oct 29.
9
Hindered diffusion in agarose gels: test of effective medium model.
Biophys J. 1996 Feb;70(2):1017-23. doi: 10.1016/S0006-3495(96)79645-5.
10
Multiscale measurements distinguish cellular and interstitial hindrances to diffusion in vivo.
Biophys J. 2009 Jul 8;97(1):330-6. doi: 10.1016/j.bpj.2009.03.064.

引用本文的文献

1
Influence of Structure-Property Relationships of Polymeric Biomaterials for Engineering Multicellular Spheroids.
Bioengineering (Basel). 2025 Aug 9;12(8):857. doi: 10.3390/bioengineering12080857.
3
Review of collagen type I-based hydrogels: focus on composition-structure-properties relationships.
NPJ Biomed Innov. 2025;2(1):16. doi: 10.1038/s44385-025-00018-w. Epub 2025 May 3.
5
Insights into the mechanisms, regulation, and therapeutic implications of extracellular matrix stiffness in cancer.
Bioeng Transl Med. 2024 Jul 31;10(1):e10698. doi: 10.1002/btm2.10698. eCollection 2025 Jan.
7
Fixation alters the physical properties of tumor tissue that regulate nanomedicine transport.
Drug Deliv. 2024 Dec;31(1):2430528. doi: 10.1080/10717544.2024.2430528. Epub 2024 Nov 20.
8
Tunable Blended Collagen I/II and Collagen I/III Hydrogels as Tissue Mimics.
Macromol Biosci. 2024 Dec;24(12):e2400280. doi: 10.1002/mabi.202400280. Epub 2024 Oct 20.
9
Extracellular Vesicle Mobility in Collagen I Hydrogels Is Influenced by Matrix-Binding Integrins.
ACS Nano. 2024 Oct 29;18(43):29585-29601. doi: 10.1021/acsnano.4c07186. Epub 2024 Oct 14.

本文引用的文献

2
Transport of molecules, particles, and cells in solid tumors.
Annu Rev Biomed Eng. 1999;1:241-63. doi: 10.1146/annurev.bioeng.1.1.241.
3
Multiphoton microscopy in biological research.
Curr Opin Chem Biol. 2001 Oct;5(5):603-8. doi: 10.1016/s1367-5931(00)00241-6.
4
Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors.
Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4628-33. doi: 10.1073/pnas.081626898. Epub 2001 Mar 27.
5
A hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels.
Biophys J. 2000 Dec;79(6):3350-3. doi: 10.1016/S0006-3495(00)76566-0.
7
Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro.
Biopolymers. 2000 Sep;54(3):222-34. doi: 10.1002/1097-0282(200009)54:3<222::AID-BIP80>3.0.CO;2-K.
8
Protein release from collagen matrices.
Adv Drug Deliv Rev. 1998 May 4;31(3):247-266. doi: 10.1016/s0169-409x(97)00119-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验