Medtronic Bakken Research Center, Research and Technology, 6229 GW Maastricht, The Netherlands.
IEEE Trans Biomed Eng. 2010 Jun;57(6):1388-98. doi: 10.1109/TBME.2009.2037974. Epub 2010 Feb 5.
This study introduces the use of wavelet decomposition of unipolar fibrillation electrograms for the automatic detection of local activation times during complex atrial fibrillation (AF). The purpose of this study was to evaluate this technique in patients with structural heart disease and longstanding persistent AF. In 46 patients undergoing cardiac surgery, unipolar fibrillation electrograms were recorded from the right atrium, using a mapping array of 244 electrodes. In 25 patients with normal sinus rhythm, AF was induced by rapid pacing, whereas 21 patients were in persistent AF. In patients with longstanding AF, the atrial electrograms showed a high degree of fractionation. In each patient, 12 s of AF were analyzed by wavelet transformation (15 scales). The finest scales (1-7) were used to reconstruct a "local" fibrillation electrogram, whereas with the coarse scales (9-15), a far-field signal was generated. With these local and far-field electrograms, the "primary" fibrillation potentials, due to wave propagation underneath the electrode, could be distinguished from double potentials and multiple components generated by remote wavefronts. Wavelet transformation resulted in AF histograms with a closely gaussian distribution and the automatically generated activation maps showed a good resemblance with fibrillation maps obtained by laborious manual editing. A special chaining algorithm was developed to detect multiple components in fractionated electrograms. The degree of fractionation showed a positive correlation with the complexity of fibrillation, thus providing an objective quantification of the degree of electrical dissociation of the atria. Wavelet transformation can be a useful technique to detect the primary potentials and quantify the degree of fractionation of fibrillation electrograms. This could enable real-time mapping of complex cases of human AF and classification of the underlying electropathological substrate.
这项研究介绍了使用单极纤维性颤动电图的小波分解,自动检测复杂心房纤维性颤动(AF)期间的局部激活时间。本研究的目的是评估这种技术在结构性心脏病和长期持续性 AF 患者中的应用。在 46 例行心脏手术的患者中,使用 244 个电极的映射数组记录右心房的单极纤维性颤动电图。在 25 例窦性心律正常的患者中,通过快速起搏诱导 AF,而 21 例患者则处于持续性 AF 中。在长期 AF 患者中,心房电图显示出高度的碎裂。在每个患者中,通过小波变换(15 个尺度)分析 12 s 的 AF。最细的尺度(1-7)用于重建“局部”纤维性颤动电图,而较粗的尺度(9-15)则产生远场信号。使用这些局部和远场电图,可以将由于电极下波传播引起的“主要”纤维性颤动电位与双电位和由远程波前产生的多个分量区分开来。小波变换产生的 AF 直方图具有非常接近高斯分布的分布,自动生成的激活图与通过费力的手动编辑获得的纤维颤动图非常相似。开发了一种特殊的连锁算法来检测碎裂电图中的多个分量。碎裂程度与纤维颤动的复杂性呈正相关,从而提供了对心房电分离程度的客观量化。小波变换可以成为一种有用的技术,用于检测主要电位并量化纤维性颤动电图的碎裂程度。这可以实现对人类 AF 复杂病例的实时映射和对潜在电生理底物的分类。