Suppr超能文献

使用基于Sigmoid函数的解析信号模型对局部电图进行分解。

Decomposition of fractionated local electrograms using an analytic signal model based on sigmoid functions.

作者信息

Wiener Thomas, Campos Fernando O, Plank Gernot, Hofer Ernst

机构信息

Institute of Biophysics, Medical University of Graz, Graz 8010 , Austria.

出版信息

Biomed Tech (Berl). 2012 Oct;57(5):371-82. doi: 10.1515/bmt-2012-0008.

Abstract

Microstructural heterogeneities in cardiac tissue, such as embedded connective tissue secondary to fibrosis, may lead to complex patterns of electrical activation that are reflected in the fractionation of extracellularly recorded electrograms. The decomposition of such electrograms into non-fractionated components is expected to provide additional information to allow a more precise classification of the microstructural properties adjacent to a given recording site. For the sake of this, an analytic signal model is introduced in this study that is capable of reliably identifying extracellular waveforms associated with sites of initiating, free-running, and terminating or colliding activation wavefronts. Using this signal model as a template, a procedure is developed for the automatic decomposition of complex fractionated electrograms into non-fractionated components. The decomposition method has been validated using electrograms obtained from one- and two-dimensional computer simulations in which all relevant intracellular and extracellular quantities are accessible at a very high spatiotemporal resolution and can be manipulated in a controlled manner. Fractionated electrograms were generated in these models by incorporating microstructural obstacles that mimicked inlays of connective tissue. Using this signal model, fractionated electrograms emerging from microstructural heterogeneities in the submillimeter range with latencies between components down to 0.6 ms can be decomposed.

摘要

心脏组织中的微观结构异质性,如继发于纤维化的嵌入式结缔组织,可能会导致复杂的电激活模式,这在细胞外记录的心电图的碎裂中有所体现。将此类心电图分解为非碎裂成分有望提供更多信息,以便更精确地分类给定记录部位附近的微观结构特性。为此,本研究引入了一种解析信号模型,该模型能够可靠地识别与起始、自由运行、终止或碰撞激活波前部位相关的细胞外波形。以该信号模型为模板,开发了一种将复杂碎裂心电图自动分解为非碎裂成分的程序。该分解方法已通过从一维和二维计算机模拟获得的心电图进行了验证,在这些模拟中,所有相关的细胞内和细胞外量都可以在非常高的时空分辨率下获取,并且可以以可控方式进行操作。通过纳入模拟结缔组织嵌入物的微观结构障碍物,在这些模型中生成了碎裂心电图。使用该信号模型,可以分解出毫米以下范围内微观结构异质性产生的碎裂心电图,其成分之间的延迟低至0.6毫秒。

相似文献

2
Analysis of fractionated atrial fibrillation electrograms by wavelet decomposition.小波分解分析心房颤动的分段电描记图。
IEEE Trans Biomed Eng. 2010 Jun;57(6):1388-98. doi: 10.1109/TBME.2009.2037974. Epub 2010 Feb 5.
3
Role of atrial tissue substrate and electrical activation pattern in fractionation of atrial electrograms: a computational study.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1587-90. doi: 10.1109/EMBC.2014.6943907.

本文引用的文献

4
Analysis of fractionated atrial fibrillation electrograms by wavelet decomposition.小波分解分析心房颤动的分段电描记图。
IEEE Trans Biomed Eng. 2010 Jun;57(6):1388-98. doi: 10.1109/TBME.2009.2037974. Epub 2010 Feb 5.
9
Oblique propagation of activation allows the detection of uncoupling microstructures from cardiac near field behavior.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:415-8. doi: 10.1109/IEMBS.2007.4352312.
10
Accuracy of local conduction velocity determination from non-fractionated cardiac activation signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:27-30. doi: 10.1109/IEMBS.2007.4352214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验