Suppr超能文献

局部同工型特异性 NOS 抑制:促进神经损伤后运动功能恢复的有前途的方法。

Local isoform-specific NOS inhibition: a promising approach to promote motor function recovery after nerve injury.

机构信息

Area de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.

出版信息

J Neurosci Res. 2010 Jul;88(9):1846-57. doi: 10.1002/jnr.22353.

Abstract

Physical injury to a nerve is the most frequent cause of acquired peripheral neuropathy, which is responsible for loss of motor, sensory and/or autonomic functions. Injured axons in the peripheral nervous system maintain the capacity to regenerate in adult mammals. However, after nerve transection, stumps of damaged nerves must be surgically joined to guide regenerating axons into the distal nerve stump. Even so, severe functional limitations persist after restorative surgery. Therefore, the identification of molecules that regulate degenerative and regenerative processes is indispensable in developing therapeutic tools to accelerate and improve functional recovery. Here, I consider the role of nitric oxide (NO) synthesized by the three major isoforms of NO synthases (NOS) in motor neuropathy. Neuronal NOS (nNOS) seems to be the primary source of NO that is detrimental to the survival of injured motoneurons. Endothelial NOS (eNOS) appears to be the major source of NO that interferes with axonal regrowth, at least soon after injury. Finally, NO derived from inducible NOS (iNOS) or nNOS is critical to the process of lipid breakdown for Wallerian degeneration and thereby benefits axonal regrowth. Specific inhibitors of these isoforms can be used to protect injured neurons from degeneration and promote axonal regeneration. A cautious proposal for the treatment of acquired motor neuropathy using therapeutic tools that locally interfere with eNOS/nNOS activities seems to merit consideration.

摘要

神经的物理损伤是获得性周围神经病的最常见原因,其可导致运动、感觉和/或自主功能丧失。在成年哺乳动物中,受损的周围神经系统轴突保持再生的能力。然而,在神经横断后,受损神经的残端必须通过手术连接,以引导再生轴突进入远端神经残端。即便如此,在修复手术后仍存在严重的功能限制。因此,鉴定调控退行性和再生过程的分子对于开发加速和改善功能恢复的治疗工具是必不可少的。在这里,我考虑了由三种主要一氧化氮合酶 (NOS) 同工型合成的一氧化氮 (NO) 在运动神经病中的作用。神经元型 NOS (nNOS) 似乎是对损伤运动神经元存活有害的 NO 的主要来源。内皮型 NOS (eNOS) 似乎是干扰轴突再生的主要来源,至少在损伤后不久。最后,诱导型 NOS (iNOS) 或 nNOS 衍生的 NO 对于 Wallerian 变性过程中的脂质分解至关重要,从而有利于轴突再生。这些同工型的特异性抑制剂可用于保护受损神经元免于退化并促进轴突再生。使用局部干扰 eNOS/nNOS 活性的治疗工具治疗获得性运动神经病的谨慎建议似乎值得考虑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验