Grupo de NeuroDegeneración y NeuroReparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Falla, 9, 11003 Cádiz, Spain.
Mol Neurobiol. 2011 Feb;43(1):41-66. doi: 10.1007/s12035-010-8159-8. Epub 2010 Dec 29.
Synapse elimination is the main factor responsible for the cognitive decline accompanying many of the neuropathological conditions affecting humans. Synaptic stripping of motoneurons is also a common hallmark of several motor pathologies. Therefore, knowledge of the molecular basis underlying this plastic process is of central interest for the development of new therapeutic tools. Recent advances from our group highlight the role of nitric oxide (NO) as a key molecule triggering synapse loss in two models of motor pathologies. De novo expression of the neuronal isoform of NO synthase (nNOS) in motoneurons commonly occurs in response to the physical injury of a motor nerve and in the course of amyotrophic lateral sclerosis. In both conditions, this event precedes synaptic withdrawal from motoneurons. Strikingly, nNOS-synthesized NO is "necessary" and "sufficient" to induce synaptic detachment from motoneurons. The mechanism involves a paracrine/retrograde action of NO on pre-synaptic structures, initiating a downstream signaling cascade that includes sequential activation of (1) soluble guanylyl cyclase, (2) cyclic guanosine monophosphate-dependent protein kinase, and (3) RhoA/Rho kinase (ROCK) signaling. Finally, ROCK activation promotes phosphorylation of regulatory myosin light chain, which leads to myosin activation and actomyosin contraction. This latter event presumably contributes to the contractile force to produce ending axon retraction. Several findings support that this mechanism may operate in the most prevalent neurodegenerative diseases.
突触消除是导致许多影响人类的神经病理学状况伴随认知能力下降的主要因素。运动神经元的突触剥离也是几种运动病理学的常见标志。因此,了解这种可塑性过程的分子基础对于开发新的治疗工具至关重要。我们小组的最新进展强调了一氧化氮(NO)作为触发两种运动病理学模型中突触丧失的关键分子的作用。神经元型一氧化氮合酶(nNOS)的新表达通常发生在运动神经的物理损伤后,以及肌萎缩侧索硬化症(ALS)的过程中。在这两种情况下,该事件先于运动神经元的突触撤出。引人注目的是,nNOS 合成的 NO 是诱导运动神经元突触分离的“必需”和“充分”条件。该机制涉及 NO 对突触前结构的旁分泌/逆行作用,引发包括以下顺序激活的下游信号级联反应:(1)可溶性鸟苷酸环化酶、(2)环鸟苷酸依赖性蛋白激酶和(3)RhoA/Rho 激酶(ROCK)信号。最后,ROCK 激活促进调节肌球蛋白轻链的磷酸化,导致肌球蛋白激活和肌动球蛋白收缩。后一事件可能有助于产生末端轴突回缩的收缩力。有几项发现支持该机制可能在最常见的神经退行性疾病中起作用。