Campus Chemical Instrument Center, Proteomics and Mass Spectrometry Facility, The Ohio State University, Columbus, Ohio 43210, USA.
Biochemistry. 2010 Mar 23;49(11):2529-39. doi: 10.1021/bi9018237.
Increased O(2)(*-) and NO production is a key mechanism of mitochondrial dysfunction in myocardial ischemia/reperfusion injury. In complex II, oxidative impairment and enhanced tyrosine nitration of the 70 kDa FAD-binding protein occur in the post-ischemic myocardium and are thought to be mediated by peroxynitrite (OONO(-)) in vivo [Chen, Y.-R., et al. (2008) J. Biol. Chem. 283, 27991-28003]. To gain deeper insights into the redox protein thiols involved in OONO(-)-mediated oxidative post-translational modifications relevant in myocardial infarction, we subjected isolated myocardial complex II to in vitro protein nitration with OONO(-). This resulted in site-specific nitration at the 70 kDa polypeptide and impairment of complex II-derived electron transfer activity. Under reducing conditions, the gel band of the 70 kDa polypeptide was subjected to in-gel trypsin/chymotrypsin digestion and then LC-MS/MS analysis. Nitration of Y(56) and Y(142) was previously reported. Further analysis revealed that C(267), C(476), and C(537) are involved in OONO(-)-mediated S-sulfonation. To identify the disulfide formation mediated by OONO(-), nitrated complex II was alkylated with iodoacetamide. In-gel proteolytic digestion and LC-MS/MS analysis were conducted under nonreducing conditions. The MS/MS data were examined with MassMatrix, indicating that three cysteine pairs, C(306)-C(312), C(439)-C(444), and C(288)-C(575), were involved in OONO(-)-mediated disulfide formation. Immuno-spin trapping with an anti-DMPO antibody and subsequent MS was used to define oxidative modification with protein radical formation. An OONO(-)-dependent DMPO adduct was detected, and further LC-MS/MS analysis indicated C(288) and C(655) were involved in DMPO binding. These results offered a complete profile of OONO(-)-mediated oxidative modifications that may be relevant in the disease model of myocardial infarction.
氧自由基(O(2)(*-))和一氧化氮(NO)的产生增加是心肌缺血/再灌注损伤中线粒体功能障碍的关键机制。在复合体 II 中,氧化损伤和 70kDa FAD 结合蛋白的酪氨酸硝化在缺血后心肌中发生,并且被认为是体内过氧亚硝酸盐(OONO(-))介导的[Chen,Y.-R.等。(2008)J. Biol. Chem. 283, 27991-28003]。为了更深入地了解与心肌梗死相关的过氧亚硝酸盐(OONO(-))介导的氧化翻译后修饰涉及的氧化蛋白巯基,我们将分离的心肌复合体 II 进行体外蛋白硝化与 OONO(-)。这导致 70kDa 多肽的特异性硝化和复合体 II 衍生的电子转移活性受损。在还原条件下,70kDa 多肽的凝胶带进行凝胶内胰蛋白酶/糜蛋白酶消化,然后进行 LC-MS/MS 分析。以前报道过 Y(56)和 Y(142)的硝化。进一步的分析表明,C(267)、C(476)和 C(537)参与 OONO(-)介导的 S-磺酸化。为了鉴定 OONO(-)介导的二硫键形成,用碘乙酰胺对硝化的复合体 II 进行烷基化。在非还原条件下进行凝胶蛋白酶消化和 LC-MS/MS 分析。使用 MassMatrix 检查 MS/MS 数据,表明三个半胱氨酸对,C(306)-C(312)、C(439)-C(444)和 C(288)-C(575),参与 OONO(-)介导的二硫键形成。使用抗 DMPO 抗体进行免疫旋转捕获和随后的 MS 用于定义与蛋白质自由基形成有关的氧化修饰。检测到 OONO(-)依赖性 DMPO 加合物,进一步的 LC-MS/MS 分析表明 C(288)和 C(655)参与 DMPO 结合。这些结果提供了完整的 OONO(-)介导的氧化修饰谱,这可能与心肌梗死疾病模型有关。