Suppr超能文献

心脏线粒体和活性氧物质的产生。

Cardiac mitochondria and reactive oxygen species generation.

机构信息

From the Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH (Y.-R.C); and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH (J.L.Z.).

出版信息

Circ Res. 2014 Jan 31;114(3):524-37. doi: 10.1161/CIRCRESAHA.114.300559.

Abstract

Mitochondrial reactive oxygen species (ROS) have emerged as an important mechanism of disease and redox signaling in the cardiovascular system. Under basal or pathological conditions, electron leakage for ROS production is primarily mediated by the electron transport chain and the proton motive force consisting of a membrane potential (ΔΨ) and a proton gradient (ΔpH). Several factors controlling ROS production in the mitochondria include flavin mononucleotide and flavin mononucleotide-binding domain of complex I, ubisemiquinone and quinone-binding domain of complex I, flavin adenine nucleotide-binding moiety and quinone-binding pocket of complex II, and unstable semiquinone mediated by the Q cycle of complex III. In mitochondrial complex I, specific cysteinyl redox domains modulate ROS production from the flavin mononucleotide moiety and iron-sulfur clusters. In the cardiovascular system, mitochondrial ROS have been linked to mediating the physiological effects of metabolic dilation and preconditioning-like mitochondrial ATP-sensitive potassium channel activation. Furthermore, oxidative post-translational modification by glutathione in complex I and complex II has been shown to affect enzymatic catalysis, protein-protein interactions, and enzyme-mediated ROS production. Conditions associated with oxidative or nitrosative stress, such as myocardial ischemia and reperfusion, increase mitochondrial ROS production via oxidative injury of complexes I and II and superoxide anion radical-induced hydroxyl radical production by aconitase. Further insight into cellular mechanisms by which specific redox post-translational modifications regulate ROS production in the mitochondria will enrich our understanding of redox signal transduction and identify new therapeutic targets for cardiovascular diseases in which oxidative stress perturbs normal redox signaling.

摘要

线粒体活性氧(ROS)已成为心血管系统疾病和氧化还原信号转导的重要机制。在基础或病理条件下,ROS 产生的电子泄漏主要由电子传递链和质子动力势介导,质子动力势由膜电位(ΔΨ)和质子梯度(ΔpH)组成。控制线粒体中 ROS 产生的几个因素包括复合体 I 的黄素单核苷酸和黄素单核苷酸结合域、复合体 I 的半醌和醌结合域、复合体 II 的黄素腺嘌呤核苷酸结合部分和醌结合口袋,以及由复合体 III 的 Q 循环介导的不稳定半醌。在线粒体复合体 I 中,特定的半胱氨酸氧化还原域调节黄素单核苷酸部分和铁硫簇的 ROS 产生。在心血管系统中,线粒体 ROS 与介导代谢扩张的生理效应和预处理样线粒体 ATP 敏感性钾通道激活有关。此外,复合体 I 和 II 中的谷胱甘肽的氧化翻译后修饰已被证明会影响酶催化、蛋白质-蛋白质相互作用和酶介导的 ROS 产生。与氧化或硝化应激相关的条件,如心肌缺血再灌注,通过复合体 I 和 II 的氧化损伤以及乌头酸酶诱导的超氧阴离子自由基产生羟自由基,增加线粒体 ROS 的产生。进一步深入了解特定的氧化还原翻译后修饰调节线粒体中 ROS 产生的细胞机制将丰富我们对氧化还原信号转导的理解,并确定氧化应激扰乱正常氧化还原信号的心血管疾病的新治疗靶点。

相似文献

1
Cardiac mitochondria and reactive oxygen species generation.
Circ Res. 2014 Jan 31;114(3):524-37. doi: 10.1161/CIRCRESAHA.114.300559.
2
Mitochondrial redox regulation and myocardial ischemia-reperfusion injury.
Am J Physiol Cell Physiol. 2022 Jan 1;322(1):C12-C23. doi: 10.1152/ajpcell.00131.2021. Epub 2021 Nov 10.
3
Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases.
Adv Exp Med Biol. 2017;982:359-370. doi: 10.1007/978-3-319-55330-6_20.
4
Generator-specific targets of mitochondrial reactive oxygen species.
Free Radic Biol Med. 2015 Jan;78:1-10. doi: 10.1016/j.freeradbiomed.2014.10.511. Epub 2014 Oct 29.
5
Mitochondrial ROS-induced ROS release: an update and review.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):509-17. doi: 10.1016/j.bbabio.2006.04.029. Epub 2006 May 23.
6
Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
Biochim Biophys Acta. 2013 Oct;1827(10):1156-64. doi: 10.1016/j.bbabio.2013.06.005. Epub 2013 Jun 22.
7
Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart.
Basic Res Cardiol. 2017 Jul;112(4):36. doi: 10.1007/s00395-017-0626-1. Epub 2017 May 16.
8
Redox-optimized ROS balance: a unifying hypothesis.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):865-77. doi: 10.1016/j.bbabio.2010.02.016. Epub 2010 Feb 20.
9
Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
J Biol Chem. 2017 Jun 16;292(24):9896-9905. doi: 10.1074/jbc.M116.768325. Epub 2017 Apr 27.

引用本文的文献

1
How to measure and model cardiovascular aging.
Cardiovasc Res. 2025 Aug 28;121(10):1489-1508. doi: 10.1093/cvr/cvaf138.
4
The roles of subcellular Argonaute 2 in cardiovascular diseases.
J Transl Int Med. 2025 Jul 30;13(4):328-337. doi: 10.1515/jtim-2025-0036. eCollection 2025 Aug.
5
Deep phenotyping of a modified diabetic cardiomyopathy mouse model which reflects clinical disease progression.
Diabetol Metab Syndr. 2025 Aug 14;17(1):334. doi: 10.1186/s13098-025-01913-3.
8
Pathogenesis and treatment strategies of sepsis-induced myocardial injury: modern and traditional medical perspectives.
Int J Biol Sci. 2025 May 15;21(8):3478-3504. doi: 10.7150/ijbs.111288. eCollection 2025.
9
Ischemia/reperfusion-associated oxidative stress is an aggravating factor for pressure ulcers.
J Clin Biochem Nutr. 2025 May;76(3):221-232. doi: 10.3164/jcbn.25-28. Epub 2025 Mar 4.

本文引用的文献

1
Mitochondrial oxidative stress corrupts coronary collateral growth by activating adenosine monophosphate activated kinase-α signaling.
Arterioscler Thromb Vasc Biol. 2013 Aug;33(8):1911-9. doi: 10.1161/ATVBAHA.113.301591. Epub 2013 Jun 20.
2
Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication.
Circ Res. 2012 Oct 26;111(10):1308-12. doi: 10.1161/CIRCRESAHA.112.271320. Epub 2012 Aug 3.
3
Protein thiyl radical mediates S-glutathionylation of complex I.
Free Radic Biol Med. 2012 Aug 15;53(4):962-73. doi: 10.1016/j.freeradbiomed.2012.05.025. Epub 2012 May 24.
5
Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion.
Am J Physiol Heart Circ Physiol. 2012 Apr 1;302(7):H1410-22. doi: 10.1152/ajpheart.00731.2011. Epub 2012 Jan 20.
6
Damage to mitochondrial complex I during cardiac ischemia reperfusion injury is reduced indirectly by anti-anginal drug ranolazine.
Biochim Biophys Acta. 2012 Mar;1817(3):419-29. doi: 10.1016/j.bbabio.2011.11.021. Epub 2011 Dec 8.
8
Characterization of potential S-nitrosylation sites in the myocardium.
Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1327-35. doi: 10.1152/ajpheart.00997.2010. Epub 2011 Jan 28.
10
Mitochondrial proton and electron leaks.
Essays Biochem. 2010;47:53-67. doi: 10.1042/bse0470053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验