From the Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH (Y.-R.C); and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH (J.L.Z.).
Circ Res. 2014 Jan 31;114(3):524-37. doi: 10.1161/CIRCRESAHA.114.300559.
Mitochondrial reactive oxygen species (ROS) have emerged as an important mechanism of disease and redox signaling in the cardiovascular system. Under basal or pathological conditions, electron leakage for ROS production is primarily mediated by the electron transport chain and the proton motive force consisting of a membrane potential (ΔΨ) and a proton gradient (ΔpH). Several factors controlling ROS production in the mitochondria include flavin mononucleotide and flavin mononucleotide-binding domain of complex I, ubisemiquinone and quinone-binding domain of complex I, flavin adenine nucleotide-binding moiety and quinone-binding pocket of complex II, and unstable semiquinone mediated by the Q cycle of complex III. In mitochondrial complex I, specific cysteinyl redox domains modulate ROS production from the flavin mononucleotide moiety and iron-sulfur clusters. In the cardiovascular system, mitochondrial ROS have been linked to mediating the physiological effects of metabolic dilation and preconditioning-like mitochondrial ATP-sensitive potassium channel activation. Furthermore, oxidative post-translational modification by glutathione in complex I and complex II has been shown to affect enzymatic catalysis, protein-protein interactions, and enzyme-mediated ROS production. Conditions associated with oxidative or nitrosative stress, such as myocardial ischemia and reperfusion, increase mitochondrial ROS production via oxidative injury of complexes I and II and superoxide anion radical-induced hydroxyl radical production by aconitase. Further insight into cellular mechanisms by which specific redox post-translational modifications regulate ROS production in the mitochondria will enrich our understanding of redox signal transduction and identify new therapeutic targets for cardiovascular diseases in which oxidative stress perturbs normal redox signaling.
线粒体活性氧(ROS)已成为心血管系统疾病和氧化还原信号转导的重要机制。在基础或病理条件下,ROS 产生的电子泄漏主要由电子传递链和质子动力势介导,质子动力势由膜电位(ΔΨ)和质子梯度(ΔpH)组成。控制线粒体中 ROS 产生的几个因素包括复合体 I 的黄素单核苷酸和黄素单核苷酸结合域、复合体 I 的半醌和醌结合域、复合体 II 的黄素腺嘌呤核苷酸结合部分和醌结合口袋,以及由复合体 III 的 Q 循环介导的不稳定半醌。在线粒体复合体 I 中,特定的半胱氨酸氧化还原域调节黄素单核苷酸部分和铁硫簇的 ROS 产生。在心血管系统中,线粒体 ROS 与介导代谢扩张的生理效应和预处理样线粒体 ATP 敏感性钾通道激活有关。此外,复合体 I 和 II 中的谷胱甘肽的氧化翻译后修饰已被证明会影响酶催化、蛋白质-蛋白质相互作用和酶介导的 ROS 产生。与氧化或硝化应激相关的条件,如心肌缺血再灌注,通过复合体 I 和 II 的氧化损伤以及乌头酸酶诱导的超氧阴离子自由基产生羟自由基,增加线粒体 ROS 的产生。进一步深入了解特定的氧化还原翻译后修饰调节线粒体中 ROS 产生的细胞机制将丰富我们对氧化还原信号转导的理解,并确定氧化应激扰乱正常氧化还原信号的心血管疾病的新治疗靶点。