Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
BMC Genomics. 2010 Feb 9;11:102. doi: 10.1186/1471-2164-11-102.
While, traditionally, regulation of gene expression can be grouped into transcriptional, translational, and post-translational mechanisms, some mechanisms of rapid genetic variation can also contribute to regulation of gene expression, e.g., phase variation.
We show here that prokaryotes evolved to include homopolymeric tracts (HTs) within coding genes as a system that allows for efficient gene inactivation. Analyses of 81 bacterial and 18 archaeal genomes showed that poly(A) and poly(T) HTs are overrepresented in these genomes and preferentially located at the 5' end of coding genes. Location of HTs at the 5' end is not driven by a preferential placement of aminoacids encoded by the AAA and TTT codons at the N-terminal of proteins. The inlA gene of the pathogen L. monocytogenes was used as a model to further study the role of HTs in reversible gene inactivation. In a number of L. monocytogenes strains, inlA harbors a 5' poly(A) HT, which regularly shows frameshift mutation leading to expression of a truncated 8 aa InlA protein. Translational fusions of the inlA 5' end allowed us to estimate that the frequency of variation in this HT is about 1,000 fold higher than the estimated average point mutation frequency.
As frameshift mutations in HTs can occur at high frequencies and enable efficient gene inactivation, hypermutable HTs appear to represent a universal system for regulation of gene expression in prokaryotes. Combined with other studies indicating that HTs also enable rapid diversification of both coding and regulatory genetic sequences in eukaryotes, our data suggest that hypermutable HTs represent a general and rapid evolutionary mechanism facilitating adaptation and gene regulation across diverse organisms.
虽然传统上基因表达的调控可以分为转录、翻译和翻译后机制,但一些快速遗传变异的机制也可以促进基因表达的调控,例如相位变异。
我们在这里表明,原核生物进化出了编码基因中的同源多聚体(HTs),作为一种允许有效基因失活的系统。对 81 个细菌和 18 个古细菌基因组的分析表明,多(A)和多(T)HTs在这些基因组中过度表达,并优先位于编码基因的 5'端。HTs 位于 5'端的位置不是由编码蛋白质 N 端的 AAA 和 TTT 密码子所编码的氨基酸的优先位置驱动的。病原体李斯特菌的 inlA 基因被用作模型,进一步研究 HTs 在可逆基因失活中的作用。在许多李斯特菌菌株中,inlA 含有 5'端多(A)HT,该 HT 经常发生移码突变,导致表达截断的 8 个氨基酸 InlA 蛋白。inlA 5'端的翻译融合使我们能够估计该 HT 中的变异频率比估计的平均点突变频率高约 1000 倍。
由于 HTs 中的移码突变可以高频发生并使基因失活有效,超突变 HTs 似乎代表了原核生物中基因表达调控的通用系统。结合其他表明 HTs 还可以使真核生物的编码和调节遗传序列快速多样化的研究,我们的数据表明,超突变 HTs 代表了一种普遍而快速的进化机制,有助于跨不同生物的适应和基因调控。