Dong Yuhui, Ge Xin, Guo Qingbin, Ou Xichao, Liu Chunfa, Wang Yuanzhi, Liu Ziyi, Yue Ruichao, Fan Weixing, Zhao Yanlin, Zhou Xiangmei
State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
Nat Commun. 2025 Jul 16;16(1):6538. doi: 10.1038/s41467-025-61824-9.
Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC) pathogens, remains a global health threat. While bacterial genetic adaptations during host infection are poorly understood, phase variation in genomic homopolymeric tracts (HT) may drive pathogenicity evolution. Here, we demonstrate that M. bovis exploits HT insertion mutations in the fumarate reductase-encoding frd operon to subvert host immunometabolism. In macrophages, wild-type M. bovis secretes FRD-catalyzed succinate, stabilizing hypoxia-inducible factor-1α (HIF-1α) to drive glycolytic reprogramming and IL-1β production. This activates IL-1R-dependent Th1 immunity, restraining bacterial replication. Conversely, M. bovis frd HT insertion mutants impair succinate secretion, suppressing HIF-1α/IL-1β signaling and redirecting immunity toward pathogenic Th17 responses that promote neutrophil infiltration and tissue necrosis. Mice infection models reveal that M. bovis frd mutants exhibit enhanced pathogenicity, with higher pulmonary bacterial burdens. IL-1R blockade phenocopies frd HT insertion mutation effects, exacerbating lung pathology. Crucially, conserved frd HT polymorphisms in clinical M. tb isolates suggest shared immune evasion strategies across MTBC pathogens. Our work uncovers the bacterial gene phase variation mechanism of hijacking the succinate/HIF-1α/IL-1β axis to operate host immunity, providing a framework for targeting host metabolic checkpoints in TB therapy.
由结核分枝杆菌复合群(MTBC)病原体引起的结核病(TB)仍然是全球健康威胁。虽然宿主感染期间细菌的基因适应性变化尚不清楚,但基因组同聚物序列(HT)中的相位变异可能推动致病性进化。在此,我们证明牛分枝杆菌利用编码延胡索酸还原酶的frd操纵子中的HT插入突变来颠覆宿主免疫代谢。在巨噬细胞中,野生型牛分枝杆菌分泌由FRD催化产生的琥珀酸,稳定缺氧诱导因子-1α(HIF-1α)以驱动糖酵解重编程和白细胞介素-1β(IL-1β)的产生。这激活了依赖IL-1受体的Th1免疫,抑制细菌复制。相反,牛分枝杆菌frd HT插入突变体损害琥珀酸分泌,抑制HIF-1α/IL-1β信号传导,并将免疫反应重定向为致病性Th17反应,从而促进中性粒细胞浸润和组织坏死。小鼠感染模型显示,牛分枝杆菌frd突变体表现出更强的致病性,肺部细菌负荷更高。阻断IL-1受体可模拟frd HT插入突变的效果,加剧肺部病理变化。至关重要的是,临床结核分枝杆菌分离株中保守的frd HT多态性表明MTBC病原体存在共同的免疫逃避策略。我们的研究揭示了细菌基因相位变异机制,即劫持琥珀酸/HIF-1α/IL-1β轴来操控宿主免疫,为结核病治疗中靶向宿主代谢检查点提供了框架。