Suppr超能文献

在非卧床糖尿病猪中使用胰岛素和胰高血糖素双皮下输注进行双激素闭环血糖控制的可行性研究。

A feasibility study of bihormonal closed-loop blood glucose control using dual subcutaneous infusion of insulin and glucagon in ambulatory diabetic swine.

作者信息

El-Khatib Firas H, Jiang John, Damiano Edward R

机构信息

Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA.

出版信息

J Diabetes Sci Technol. 2009 Jul 1;3(4):789-803. doi: 10.1177/193229680900300428.

Abstract

BACKGROUND

We sought to test the feasibility and efficacy of bihormonal closed-loop blood glucose (BG) control that utilizes subcutaneous (SC) infusion of insulin and glucagon, a model-predictive control algorithm for determining insulin dosing, and a proportional-derivative control algorithm for determining glucagon dosing.

METHODS

Thirteen closed-loop experiments (approximately 7-27 h in length) were conducted in six ambulatory diabetic pigs weighing 26-50 kg. In all experiments, venous BG was sampled through a central line in the vena cava. Efficacy was evaluated in terms of the controller's ability to regulate BG in response to large meal disturbances ( approximately 5 g of carbohydrate per kilogram of body mass per meal) based only on regular frequent venous BG sampling and requiring only the subject's weight for initialization.

RESULTS

Closed-loop results demonstrated successful BG regulation to normoglycemic range, with average insulin-to-carbohydrate ratios between approximately 1:20 and 1:40 U/g. The total insulin bolus doses averaged approximately 6 U for a meal containing approximately 6 g per kilogram body mass. Mean BG values in two 24 h experiments were approximately 142 and approximately 155 mg/dl, with the total daily dose (TDD) of insulin being approximately 0.8-1.0 U per kilogram of body mass and the TDD of glucagon being approximately 0.02-0.05 mg. Results also affirmed the efficacy of SC doses of glucagon in staving off episodic hypoglycemia.

CONCLUSIONS

We demonstrate the feasibility of bihormonal closed-loop BG regulation using a control system that employs SC infusion of insulin and glucagon as governed by an algorithm that reacts only to BG without any feed-forward information regarding carbohydrate consumption or physical activity. As such, this study can reasonably be regarded as the first practical implementation of an artificial endocrine pancreas that has a hormonally derived counterregulatory capability.

摘要

背景

我们试图测试双激素闭环血糖(BG)控制的可行性和有效性,该控制方法利用皮下(SC)输注胰岛素和胰高血糖素、一种用于确定胰岛素剂量的模型预测控制算法以及一种用于确定胰高血糖素剂量的比例 - 微分控制算法。

方法

在6头体重26 - 50 kg的非卧床糖尿病猪身上进行了13次闭环实验(时长约7 - 27小时)。在所有实验中,通过腔静脉的中心静脉导管采集静脉血中的血糖。仅基于定期频繁的静脉血糖采样且仅需受试者体重进行初始化,根据控制器应对大餐干扰(每餐每千克体重约5克碳水化合物)来调节血糖的能力评估有效性。

结果

闭环结果表明成功将血糖调节至正常血糖范围,胰岛素与碳水化合物的平均比例约为1:20至1:40 U/g。对于每餐每千克体重约含6克碳水化合物的餐食,胰岛素总推注剂量平均约为6 U。两次24小时实验中的平均血糖值分别约为142和155 mg/dl,胰岛素每日总剂量(TDD)约为每千克体重0.8 - 1.0 U,胰高血糖素的TDD约为0.02 - 0.05 mg。结果还证实了皮下注射胰高血糖素在预防间歇性低血糖方面的有效性。

结论

我们证明了使用一种控制系统进行双激素闭环血糖调节的可行性,该系统采用皮下输注胰岛素和胰高血糖素,由一种仅对血糖做出反应而无任何关于碳水化合物消耗或身体活动的前馈信息的算法控制。因此,本研究可合理地被视为具有激素衍生的反调节能力的人工内分泌胰腺的首次实际应用。

相似文献

2
Efficacy determinants of subcutaneous microdose glucagon during closed-loop control.
J Diabetes Sci Technol. 2010 Nov 1;4(6):1288-304. doi: 10.1177/193229681000400602.
4
A bihormonal closed-loop artificial pancreas for type 1 diabetes.
Sci Transl Med. 2010 Apr 14;2(27):27ra27. doi: 10.1126/scitranslmed.3000619.
5
Pharmacodynamics and stability of subcutaneously infused glucagon in a type 1 diabetic Swine model in vivo.
Diabetes Technol Ther. 2007 Apr;9(2):135-44. doi: 10.1089/dia.2006.0006.
6
Feasibility of a bihormonal closed-loop system to control postexercise and postprandial glucose excursions.
J Diabetes Sci Technol. 2012 Sep 1;6(5):1114-22. doi: 10.1177/193229681200600516.
7
Blood glucose control in type 1 diabetes with a bihormonal bionic endocrine pancreas.
Diabetes Care. 2012 Nov;35(11):2148-55. doi: 10.2337/dc12-0071. Epub 2012 Aug 24.
8
Automated control of an adaptive bihormonal, dual-sensor artificial pancreas and evaluation during inpatient studies.
IEEE Trans Biomed Eng. 2014 Oct;61(10):2569-81. doi: 10.1109/TBME.2014.2323248. Epub 2014 May 13.

引用本文的文献

1
Current Advances of Artificial Pancreas Systems: A Comprehensive Review of the Clinical Evidence.
Diabetes Metab J. 2021 Nov;45(6):813-839. doi: 10.4093/dmj.2021.0177. Epub 2021 Nov 22.
2
Phenolic Preservative Removal from Commercial Insulin Formulations Reduces Tissue Inflammation while Maintaining Euglycemia.
ACS Pharmacol Transl Sci. 2021 Apr 26;4(3):1161-1174. doi: 10.1021/acsptsci.1c00047. eCollection 2021 Jun 11.
3
Feasibility of large experimental animal models in testing novel therapeutic strategies for diabetes.
World J Diabetes. 2021 Apr 15;12(4):306-330. doi: 10.4239/wjd.v12.i4.306.
5
Glucagon sensitivity and clearance in type 1 diabetes: insights from in vivo and in silico experiments.
Am J Physiol Endocrinol Metab. 2015 Sep 1;309(5):E474-86. doi: 10.1152/ajpendo.00236.2015. Epub 2015 Jul 7.
6
Use of microdialysis-based continuous glucose monitoring to drive real-time semi-closed-loop insulin infusion.
J Diabetes Sci Technol. 2014 Nov;8(6):1074-80. doi: 10.1177/1932296814549828. Epub 2014 Sep 9.
7
Clinical evaluation of an automated artificial pancreas using zone-model predictive control and health monitoring system.
Diabetes Technol Ther. 2014 Jun;16(6):348-57. doi: 10.1089/dia.2013.0231. Epub 2014 Jan 28.
8
Systematically in silico comparison of unihormonal and bihormonal artificial pancreas systems.
Comput Math Methods Med. 2013;2013:712496. doi: 10.1155/2013/712496. Epub 2013 Oct 24.
10
Wearable and implantable pancreas substitutes.
J Artif Organs. 2013 Mar;16(1):9-22. doi: 10.1007/s10047-012-0660-6. Epub 2012 Sep 20.

本文引用的文献

2
Benefits and limitations of self-monitoring of blood glucose.
J Diabetes Sci Technol. 2007 Jan;1(1):130-2. doi: 10.1177/193229680700100121.
3
Translating the A1C assay into estimated average glucose values.
Diabetes Care. 2008 Aug;31(8):1473-8. doi: 10.2337/dc08-0545. Epub 2008 Jun 7.
5
Pharmacodynamics and stability of subcutaneously infused glucagon in a type 1 diabetic Swine model in vivo.
Diabetes Technol Ther. 2007 Apr;9(2):135-44. doi: 10.1089/dia.2006.0006.
6
Feasibility of automating insulin delivery for the treatment of type 1 diabetes.
Diabetes. 2006 Dec;55(12):3344-50. doi: 10.2337/db06-0419.
9
Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes.
N Engl J Med. 2005 Dec 22;353(25):2643-53. doi: 10.1056/NEJMoa052187.
10
Implantable closed-loop glucose-sensing and insulin delivery: the future for insulin pump therapy.
Curr Opin Pharmacol. 2002 Dec;2(6):708-16. doi: 10.1016/s1471-4892(02)00216-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验