Suppr超能文献

使用区域模型预测控制和健康监测系统的自动化人工胰腺的临床评估。

Clinical evaluation of an automated artificial pancreas using zone-model predictive control and health monitoring system.

作者信息

Harvey Rebecca A, Dassau Eyal, Bevier Wendy C, Seborg Dale E, Jovanovič Lois, Doyle Francis J, Zisser Howard C

机构信息

1 Sansum Diabetes Research Institute , Santa Barbara, California.

出版信息

Diabetes Technol Ther. 2014 Jun;16(6):348-57. doi: 10.1089/dia.2013.0231. Epub 2014 Jan 28.

Abstract

BACKGROUND

This study was performed to evaluate the safety and efficacy of a fully automated artificial pancreas using zone-model predictive control (zone-MPC) with the health monitoring system (HMS) during unannounced meals and overnight and exercise periods.

SUBJECTS AND METHODS

A fully automated closed-loop artificial pancreas was evaluated in 12 subjects (eight women, four men) with type 1 diabetes (mean±SD age, 49.4±10.4 years; diabetes duration, 32.7±16.0 years; glycosylated hemoglobin, 7.3±1.2%). The zone-MPC controller used an a priori model that was initialized using the subject's total daily insulin. The controller was designed to keep glucose levels between 80 and 140 mg/dL. A hypoglycemia prediction algorithm, a module of the HMS, was used in conjunction with the zone controller to alert the user to consume carbohydrates if the glucose level was predicted to fall below 70 mg/dL in the next 15 min.

RESULTS

The average time spent in the 70-180 mg/dL range, measured by the YSI glucose and lactate analyzer (Yellow Springs Instruments, Yellow Springs, OH), was 80% for the entire session, 92% overnight from 12 a.m. to 7 a.m., and 69% and 61% for the 5-h period after dinner and breakfast, respectively. The time spent < 60 mg/dL for the entire session by YSI was 0%, with no safety events. The HMS sent appropriate warnings to prevent hypoglycemia via short and multimedia message services, at an average of 3.8 treatments per subject.

CONCLUSIONS

The combination of the zone-MPC controller and the HMS hypoglycemia prevention algorithm was able to safely regulate glucose in a tight range with no adverse events despite the challenges of unannounced meals and moderate exercise.

摘要

背景

本研究旨在评估一种采用区域模型预测控制(zone-MPC)与健康监测系统(HMS)的全自动人工胰腺在未宣布用餐、夜间及运动期间的安全性和有效性。

受试者与方法

对12名1型糖尿病患者(8名女性,4名男性)(平均年龄±标准差,49.4±10.4岁;糖尿病病程,32.7±16.0年;糖化血红蛋白,7.3±1.2%)进行了全自动闭环人工胰腺评估。区域MPC控制器使用一个先验模型,该模型通过受试者的每日总胰岛素量进行初始化。该控制器旨在将血糖水平维持在80至140mg/dL之间。低血糖预测算法作为HMS的一个模块,与区域控制器联合使用,以便在预测血糖水平在未来15分钟内降至70mg/dL以下时提醒用户摄入碳水化合物。

结果

使用YSI葡萄糖和乳酸分析仪(美国俄亥俄州黄泉市的YSI公司)测量,整个时段血糖水平处于70 - 180mg/dL范围内的平均时间为80%,夜间(凌晨12点至早上7点)为92%,晚餐后和早餐后5小时分别为69%和61%。整个时段YSI测量的血糖水平<60mg/dL的时间为0%,无安全事件发生。HMS通过短信和多媒体消息服务发送适当的低血糖预防警告,平均每位受试者3.8次。

结论

尽管存在未宣布用餐和适度运动的挑战,但区域MPC控制器与HMS低血糖预防算法的组合能够在较窄范围内安全调节血糖,且无不良事件发生。

相似文献

引用本文的文献

2
An overview of advancements in closed-loop artificial pancreas system.闭环人工胰腺系统进展概述
Heliyon. 2022 Nov 14;8(11):e11648. doi: 10.1016/j.heliyon.2022.e11648. eCollection 2022 Nov.
4
Feasibility of Early Meal Detection Based on Abdominal Sound.基于腹部声音的早期进食检测可行性
IEEE J Transl Eng Health Med. 2019 Sep 11;7:3300212. doi: 10.1109/JTEHM.2019.2940218. eCollection 2019.
6
Multi-level Supervision and Modification of Artificial Pancreas Control System.人工胰腺控制系统的多层次监督与修正
Comput Chem Eng. 2018 Apr 6;112:57-69. doi: 10.1016/j.compchemeng.2018.02.002. Epub 2018 Feb 10.

本文引用的文献

5
Clinical evaluation of a personalized artificial pancreas.个性化人工胰腺的临床评估。
Diabetes Care. 2013 Apr;36(4):801-9. doi: 10.2337/dc12-0948. Epub 2012 Nov 27.
9
Modular closed-loop control of diabetes.糖尿病的模块化闭环控制。
IEEE Trans Biomed Eng. 2012 Nov;59(11):2986-99. doi: 10.1109/TBME.2012.2192930. Epub 2012 Apr 3.
10
Standards of medical care in diabetes--2012.《糖尿病医疗护理标准——2012》
Diabetes Care. 2012 Jan;35 Suppl 1(Suppl 1):S11-63. doi: 10.2337/dc12-s011.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验