Suppr超能文献

闭环控制期间皮下微剂量胰高血糖素的疗效决定因素

Efficacy determinants of subcutaneous microdose glucagon during closed-loop control.

作者信息

Russell Steven J, El-Khatib Firas H, Nathan David M, Damiano Edward R

机构信息

Diabetes Unit and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA.

出版信息

J Diabetes Sci Technol. 2010 Nov 1;4(6):1288-304. doi: 10.1177/193229681000400602.

Abstract

BACKGROUND

During a previous clinical trial of a closed-loop blood glucose (BG) control system that administered insulin and microdose glucagon subcutaneously, glucagon was not uniformly effective in preventing hypoglycemia (BG<70 mg/dl). After a global adjustment of control algorithm parameters used to model insulin absorption and clearance to more closely match insulin pharmacokinetic (PK) parameters observed in the study cohort, administration of glucagon by the control system was more effective in preventing hypoglycemia. We evaluated the role of plasma insulin and plasma glucagon levels in determining whether glucagon was effective in preventing hypoglycemia.

METHODS

We identified and analyzed 36 episodes during which glucagon was given and categorized them as either successful or unsuccessful in preventing hypoglycemia.

RESULTS

In 20 of the 36 episodes, glucagon administration prevented hypoglycemia. In the remaining 16, BG fell below 70 mg/dl (12 of the 16 occurred during experiments performed before PK parameters were adjusted). The (dimensionless) levels of plasma insulin (normalized relative to each subject's baseline insulin level) were significantly higher during episodes ending in hypoglycemia (5.2 versus 3.7 times the baseline insulin level, p=.01). The relative error in the control algorithm's online estimate of the instantaneous plasma insulin level was also higher during episodes ending in hypoglycemia (50 versus 30%, p=.003), as were the peak plasma glucagon levels (183 versus 116 pg/ml, p=.007, normal range 50-150 pg/ml) and mean plasma glucagon levels (142 versus 75 pg/ml, p=.02). Relative to mean plasma insulin levels, mean plasma glucagon levels tended to be 59% higher during episodes ending in hypoglycemia, although this result was not found to be statistically significant (p=.14). The rate of BG descent was also significantly greater during episodes ending in hypoglycemia (1.5 versus 1.0 mg/dl/min, p=.02).

CONCLUSIONS

Microdose glucagon administration was relatively ineffective in preventing hypoglycemia when plasma insulin levels exceeded the controller's online estimate by >60%. After the algorithm PK parameters were globally adjusted, insulin dosing was more conservative and microdose glucagon administration was very effective in reducing hypoglycemia while maintaining normal plasma glucagon levels. Improvements in the accuracy of the controller's online estimate of plasma insulin levels could be achieved if ultrarapid-acting insulin formulations could be developed with faster absorption and less intra- and intersubject variability than the current insulin analogs available today.

摘要

背景

在一项关于闭环血糖(BG)控制系统的前期临床试验中,该系统通过皮下注射胰岛素和微量胰高血糖素,结果发现胰高血糖素在预防低血糖(BG<70mg/dl)方面并非始终有效。在对用于模拟胰岛素吸收和清除的控制算法参数进行全面调整,使其更紧密地匹配研究队列中观察到的胰岛素药代动力学(PK)参数后,该控制系统给予的胰高血糖素在预防低血糖方面更有效。我们评估了血浆胰岛素和血浆胰高血糖素水平在确定胰高血糖素预防低血糖是否有效的作用。

方法

我们识别并分析了36次给予胰高血糖素的情况,并将其分类为预防低血糖成功或失败。

结果

在36次情况中的20次,给予胰高血糖素预防了低血糖。在其余16次中,BG降至70mg/dl以下(16次中的12次发生在PK参数调整前进行的实验中)。在以低血糖告终的情况中,血浆胰岛素(相对于每个受试者的基线胰岛素水平进行标准化)水平(无量纲)显著更高(是基线胰岛素水平的5.2倍 vs 3.7倍,p = 0.01)。在以低血糖告终的情况中,控制算法对瞬时血浆胰岛素水平的在线估计的相对误差也更高(50% vs 30%,p = 0.003),血浆胰高血糖素峰值水平(183 vs 116pg/ml,p = 0.007,正常范围50 - 150pg/ml)和平均血浆胰高血糖素水平(142 vs 75pg/ml,p = 0.02)也是如此。相对于平均血浆胰岛素水平,在以低血糖告终的情况中,平均血浆胰高血糖素水平往往高出59%,尽管这一结果未发现具有统计学意义(p = 0.14)。在以低血糖告终的情况中,BG下降速率也显著更大(1.5 vs 1.0mg/dl/分钟,p = 0.02)。

结论

当血浆胰岛素水平超过控制器的在线估计值>60%时,给予微量胰高血糖素预防低血糖相对无效。在对算法PK参数进行全面调整后,胰岛素给药更为保守,给予微量胰高血糖素在降低低血糖的同时维持正常血浆胰高血糖素水平方面非常有效。如果能够开发出吸收更快、受试者内和受试者间变异性比目前可用的胰岛素类似物更小的超短效胰岛素制剂,那么控制器对血浆胰岛素水平的在线估计准确性将会提高。

相似文献

1
Efficacy determinants of subcutaneous microdose glucagon during closed-loop control.
J Diabetes Sci Technol. 2010 Nov 1;4(6):1288-304. doi: 10.1177/193229681000400602.
2
Factors influencing the effectiveness of glucagon for preventing hypoglycemia.
J Diabetes Sci Technol. 2010 Nov 1;4(6):1305-10. doi: 10.1177/193229681000400603.
3
A bihormonal closed-loop artificial pancreas for type 1 diabetes.
Sci Transl Med. 2010 Apr 14;2(27):27ra27. doi: 10.1126/scitranslmed.3000619.
8
Cross-Validation of a Glucose-Insulin-Glucagon Pharmacodynamics Model for Simulation Using Data From Patients With Type 1 Diabetes.
J Diabetes Sci Technol. 2017 Nov;11(6):1101-1111. doi: 10.1177/1932296817693254. Epub 2017 Feb 1.

引用本文的文献

1
The artificial pancreas: two alternative approaches to achieve a fully closed-loop system with optimal glucose control.
J Endocrinol Invest. 2024 Mar;47(3):513-521. doi: 10.1007/s40618-023-02193-2. Epub 2023 Sep 15.
2
The role of pancreas to improve hyperglycemia in STZ-induced diabetic rats by thiamine disulfide.
Nutr Diabetes. 2022 Jun 20;12(1):32. doi: 10.1038/s41387-022-00211-5.
3
Dual-hormone artificial pancreas for management of type 1 diabetes: Recent progress and future directions.
Artif Organs. 2021 Sep;45(9):968-986. doi: 10.1111/aor.14023. Epub 2021 Jul 15.
4
Pharmacokinetics of Intraperitoneally Delivered Glucagon in Pigs: A Hypothesis of First Pass Metabolism.
Eur J Drug Metab Pharmacokinet. 2021 Jul;46(4):505-511. doi: 10.1007/s13318-021-00692-2. Epub 2021 Jun 7.
5
Algorithms for Automated Insulin Delivery: An Overview.
J Diabetes Sci Technol. 2022 Sep;16(5):1228-1238. doi: 10.1177/19322968211008442. Epub 2021 May 6.
7
Realizing a Closed-Loop (Artificial Pancreas) System for the Treatment of Type 1 Diabetes.
Endocr Rev. 2019 Dec 1;40(6):1521-1546. doi: 10.1210/er.2018-00174.
8
Type 1 Diabetes - A Clinical Perspective.
Point Care. 2017 Mar;16(1):37-40. doi: 10.1097/POC.0000000000000125.
9
Development of a Microsphere-Based System to Facilitate Real-Time Insulin Monitoring.
J Diabetes Sci Technol. 2016 May 3;10(3):689-96. doi: 10.1177/1932296815625081. Print 2016 May.
10
Factors affecting the success of glucagon delivered during an automated closed-loop system in type 1 diabetes.
J Diabetes Complications. 2015 Jan-Feb;29(1):93-8. doi: 10.1016/j.jdiacomp.2014.09.001. Epub 2014 Sep 16.

本文引用的文献

1
Stabilized glucagon formulation for bihormonal pump use.
J Diabetes Sci Technol. 2010 Nov 1;4(6):1332-7. doi: 10.1177/193229681000400606.
2
Optimization of the native glucagon sequence for medicinal purposes.
J Diabetes Sci Technol. 2010 Nov 1;4(6):1322-31. doi: 10.1177/193229681000400605.
4
A bihormonal closed-loop artificial pancreas for type 1 diabetes.
Sci Transl Med. 2010 Apr 14;2(27):27ra27. doi: 10.1126/scitranslmed.3000619.
5
Novel use of glucagon in a closed-loop system for prevention of hypoglycemia in type 1 diabetes.
Diabetes Care. 2010 Jun;33(6):1282-7. doi: 10.2337/dc09-2254. Epub 2010 Mar 23.
9
Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial.
Lancet. 2010 Feb 27;375(9716):743-51. doi: 10.1016/S0140-6736(09)61998-X. Epub 2010 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验